3 resultados para Product Personalisation
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
We define personalisation as the set of capabilities that enables a user or an organisation to customise their working environment to suit their specific needs, preferences and circumstances. In the context of service discovery on the Grid, the demand for personalisation comes from individual users, who want their preferences to be taken into account during the search and selection of suitable services. These preferences can express, for example, the reliability of a service, quality of results, functionality, and so on. In this paper, we identify the problems related to personalising service discovery and present our solution: a personalised service registry or View. We describe scenarios in which personsalised service discovery would be useful and describe how our technology achieves them.
Resumo:
Agent-oriented software engineering and software product lines are two promising software engineering techniques. Recent research work has been exploring their integration, namely multi-agent systems product lines (MAS-PLs), to promote reuse and variability management in the context of complex software systems. However, current product derivation approaches do not provide specific mechanisms to deal with MAS-PLs. This is essential because they typically encompass several concerns (e.g., trust, coordination, transaction, state persistence) that are constructed on the basis of heterogeneous technologies (e.g., object-oriented frameworks and platforms). In this paper, we propose the use of multi-level models to support the configuration knowledge specification and automatic product derivation of MAS-PLs. Our approach provides an agent-specific architecture model that uses abstractions and instantiation rules that are relevant to this application domain. In order to evaluate the feasibility and effectiveness of the proposed approach, we have implemented it as an extension of an existing product derivation tool, called GenArch. The approach has also been evaluated through the automatic instantiation of two MAS-PLs, demonstrating its potential and benefits to product derivation and configuration knowledge specification.