5 resultados para Occurrences fatales
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are represented as strings of abstract intervallic symbols; the melodic representation introduces special “binary don’t care” symbols for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established “step–leap” representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between the various abstract categories e.g. *=s, *=l and #=-s, #=-l. We propose an O(n+d(n-d)+z)-time algorithm for computing all maximal-pairs in a given sequence x=x[1..n], where x contains d occurrences of binary don’t cares and z is the number of reported maximal-pairs.
Resumo:
This paper proposes an efficient pattern extraction algorithm that can be applied on melodic sequences that are represented as strings of abstract intervallic symbols; the melodic representation introduces special “binary don’t care” symbols for intervals that may belong to two partially overlapping intervallic categories. As a special case the well established “step–leap” representation is examined. In the step–leap representation, each melodic diatonic interval is classified as a step (±s), a leap (±l) or a unison (u). Binary don’t care symbols are used to represent the possible overlapping between the various abstract categories e.g. *=s, *=l and #=-s, #=-l. We propose an O(n+d(n-d)+z)-time algorithm for computing all maximal-pairs in a given sequence x=x[1..n], where x contains d occurrences of binary don’t cares and z is the number of reported maximal-pairs.
Resumo:
A description of a data item's provenance can be provided in dierent forms, and which form is best depends on the intended use of that description. Because of this, dierent communities have made quite distinct underlying assumptions in their models for electronically representing provenance. Approaches deriving from the library and archiving communities emphasise agreed vocabulary by which resources can be described and, in particular, assert their attribution (who created the resource, who modied it, where it was stored etc.) The primary purpose here is to provide intuitive metadata by which users can search for and index resources. In comparison, models for representing the results of scientific workflows have been developed with the assumption that each event or piece of intermediary data in a process' execution can and should be documented, to give a full account of the experiment undertaken. These occurrences are connected together by stating where one derived from, triggered, or otherwise caused another, and so form a causal graph. Mapping between the two approaches would be benecial in integrating systems and exploiting the strengths of each. In this paper, we specify such a mapping between Dublin Core and the Open Provenance Model. We further explain the technical issues to overcome and the rationale behind the approach, to allow the same method to apply in mapping similar schemes.