6 resultados para Multi-resolution techniques

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until recently, First-Order Temporal Logic (FOTL) has been only partially understood. While it is well known that the full logic has no finite axiomatisation, a more detailed analysis of fragments of the logic was not previously available. However, a breakthrough by Hodkinson et al., identifying a finitely axiomatisable fragment, termed the monodic fragment, has led to improved understanding of FOTL. Yet, in order to utilise these theoretical advances, it is important to have appropriate proof techniques for this monodic fragment.In this paper, we modify and extend the clausal temporal resolution technique, originally developed for propositional temporal logics, to enable its use in such monodic fragments. We develop a specific normal form for monodic formulae in FOTL, and provide a complete resolution calculus for formulae in this form. Not only is this clausal resolution technique useful as a practical proof technique for certain monodic classes, but the use of this approach provides us with increased understanding of the monodic fragment. In particular, we here show how several features of monodic FOTL can be established as corollaries of the completeness result for the clausal temporal resolution method. These include definitions of new decidable monodic classes, simplification of existing monodic classes by reductions, and completeness of clausal temporal resolution in the case of monodic logics with expanding domains, a case with much significance in both theory and practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agent-oriented software engineering and software product lines are two promising software engineering techniques. Recent research work has been exploring their integration, namely multi-agent systems product lines (MAS-PLs), to promote reuse and variability management in the context of complex software systems. However, current product derivation approaches do not provide specific mechanisms to deal with MAS-PLs. This is essential because they typically encompass several concerns (e.g., trust, coordination, transaction, state persistence) that are constructed on the basis of heterogeneous technologies (e.g., object-oriented frameworks and platforms). In this paper, we propose the use of multi-level models to support the configuration knowledge specification and automatic product derivation of MAS-PLs. Our approach provides an agent-specific architecture model that uses abstractions and instantiation rules that are relevant to this application domain. In order to evaluate the feasibility and effectiveness of the proposed approach, we have implemented it as an extension of an existing product derivation tool, called GenArch. The approach has also been evaluated through the automatic instantiation of two MAS-PLs, demonstrating its potential and benefits to product derivation and configuration knowledge specification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic composition of services provides the ability to build complex distributed applications at run time by combining existing services, thus coping with a large variety of complex requirements that cannot be met by individual services alone. However, with the increasing amount of available services that differ in granularity (amount of functionality provided) and qualities, selecting the best combination of services becomes very complex. In response, this paper addresses the challenges of service selection, and makes a twofold contribution. First, a rich representation of compositional planning knowledge is provided, allowing the expression of multiple decompositions of tasks at arbitrary levels of granularity. Second, two distinct search space reduction techniques are introduced, the application of which, prior to performing service selection, results in significant improvement in selection performance in terms of execution time, which is demonstrated via experimental results.