49 resultados para Moreau
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
Service-based architectures enable the development of new classes of Grid and distributed applications. One of the main capabilities provided by such systems is the dynamic and flexible integration of services, according to which services are allowed to be a part of more than one distributed system and simultaneously serve different applications. This increased flexibility in system composition makes it difficult to address classical distributed system issues such as fault-tolerance. While it is relatively easy to make an individual service fault-tolerant, improving fault-tolerance of services collaborating in multiple application scenarios is a challenging task. In this paper, we look at the issue of developing fault-tolerant service-based distributed systems, and propose an infrastructure to implement fault tolerance capabilities transparent to services.
Resumo:
Service discovery is a critical task in service-oriented architectures such as the Grid and Web Services. In this paper, we study a semantics enabled service registry, GRIMOIRES, from a performance perspective. GRIMOIRES is designed to be the registry for myGrid and the OMII software distribution. We study the scalability of GRIMOIRES against the amount of information that has been published into it. The methodology we use and the data we present are helpful for researchers to understand the performance characteristics of the registry and, more generally, of semantics enabled service discovery. Based on this experimentation, we claim that GRIMOIRES is an efficient semantics-aware service discovery engine.
Resumo:
Service discovery is a critical task in service-oriented architectures such as the Grid and Web Services. In this paper, we study a semantics enabled service registry, GRIMOIRES, from a performance perspective. GRIMOIRES is designed to be the registry for myGrid and the OMII software distribution. We study the scalability of GRIMOIRES against the amount of information that has been published into it. The methodology we use and the data we present are helpful for researchers to understand the performance characteristics of the registry and, more generally, of semantics enabled service discovery. Based on this experimentation, we claim that GRIMOIRES is an efficient semantics-aware service discovery engine.
Resumo:
Very large scale computations are now becoming routinely used as a methodology to undertake scientific research. In this context, `provenance systems' are regarded as the equivalent of the scientist's logbook for in silico experimentation: provenance captures the documentation of the process that led to some result. Using a protein compressibility analysis application, we derive a set of generic use cases for a provenance system. In order to support these, we address the following fundamental questions: what is provenance? how to record it? what is the performance impact for grid execution? what is the performance of reasoning? In doing so, we define a technologyindependent notion of provenance that captures interactions between components, internal component information and grouping of interactions, so as to allow us to analyse and reason about the execution of scientific processes. In order to support persistent provenance in heterogeneous applications, we introduce a separate provenance store, in which provenance documentation can be stored, archived and queried independently of the technology used to run the application. Through a series of practical tests, we evaluate the performance impact of such a provenance system. In summary, we demonstrate that provenance recording overhead of our prototype system remains under 10% of execution time, and we show that the recorded information successfully supports our use cases in a performant manner.
Resumo:
The importance of understanding the process by which a result was generated in an experiment is fundamental to science. Without such information, other scientists cannot replicate, validate, or duplicate an experiment. We define provenance as the process that led to a result. With large scale in-silico experiments, it becomes increasingly difficult for scientists to record process documentation that can be used to retrieve the provenance of a result. Provenance Recording for Services (PReServ) is a software package that allows developers to integrate process documentation recording into their applications. PReServ has been used by several applications and its performance has been benchmarked.
Resumo:
Messaging middleware provides asynchronous communication between services in distributed environments. However, security, reliability and performance issues compel such middleware to be distributed, and distribution throws up its own problems such as identifying messaging channels which could then be subscribed to. In particular, interested parties need to identify channels defined in remote locations while not knowing details of how they are defined. A common vocabulary using semantic descriptions offers a solution to this problem. In this paper, we describe the design and implementation of federated messaging middleware using semantic description of channels.
Resumo:
The notification service is the part of myGrid that enables asynchronous delivery of messages between distributed components. It includes features such as topic-based publish-subscribe messaging, push/pull models, asynchronous delivery, persistence, transient and durable subscriptions, durable topics, negotiation of QoS, hierarchical topic structure and federation of services. Some of these features are novel in the area of messaging middleware. A cost evaluation of some of these features indicate that the overhead incurred is justified in terms of compensating benefits gained.
Resumo:
One of the most pervasive classes of services needed to support e-Science applications are those responsible for the discovery of resources. We have developed a solution to the problem of service discovery in a Semantic Web/Grid setting. We do this in the context of bioinformatics, which is the use of computational and mathematical techniques to store, manage, and analyse the data from molecular biology in order to answer questions about biological phenomena. Our specific application is myGrid (www.mygrid.org.uk) that is developing open source, service-based middleware upon which bioinformatics applications can be built. myGrid is specifically targeted at developing open source high-level service Grid middleware for bioinformatics.
Resumo:
One of the most pervasive classes of services needed to support e-Science applications are those responsible for the discovery of resources. We have developed a solution to the problem of service discovery in a Semantic Web/Grid setting. We do this in the context of bioinformatics, which is the use of computational and mathematical techniques to store, manage, and analyse the data from molecular biology in order to answer questions about biological phenomena. Our specific application is myGrid (http: //www.mygrid.org.uk) that is developing open source, service-based middleware upon which bioin- formatics applications can be built. myGrid is specif- ically targeted at developing open source high-level service Grid middleware for bioinformatics.
Resumo:
The provenance of entities, whether electronic data or physical artefacts, is crucial information in practically all domains, including science, business and art. The increased use of software in automating activities provides the opportunity to add greatly to the amount we can know about an entityâ??s history and the process by which it came to be as it is. However, it also presents difficulties: querying for the provenance of an entity could potentially return detailed information stretching back to the beginning of time, and most of it possibly irrelevant to the querier. In this paper, we define the concept of provenance query and describe techniques that allow us to perform scoped provenance queries.
Resumo:
The authors take a broad view that ultimately Grid- or Web-services must be located via personalised, semantic-rich discovery processes. They argue that such processes must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. Examples of such metadata are reliability metrics, quality of service data, or semantic service description markup. This paper presents UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. They also discuss the use of a rich, graph-based RDF query language for syntactic queries on this data. Finally, they analyse the performance of each of these contributions in our implementation.
Resumo:
We take a broad view that ultimately Grid- or Web-services must be located via personalised, semantic-rich discovery processes. We argue that such processes must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. Examples of such metadata are reliability metrics, quality of service data, or semantic service description markup. This paper presents UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. We also discuss the use of a rich, graph-based RDF query language for syntactic queries on this data. Finally, we analyse the performance of each of these contributions in our implementation.