3 resultados para Modular integrated utility systems.
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, and may be encoded in electronic contracts in order to specify the obliged, permitted and prohibited behaviours of agents that are signatories to such contracts. Enactment and management of electronic contracts thus enables the use of regulatory mechanisms to ensure that agent behaviours comply with the encoded norms. To facilitate such mechanisms requires monitoring in order to detect and explain violation of norms. In this paper we propose a framework for monitoring that is to be implemented and integrated into a suite of contract enactment and management tools. The framework adopts a non-intrusive approach to monitoring, whereby the states of a contract with respect to its contained norms can be inferred on the basis of messages exchanged. Specifically, the framework deploys agents that observe messages sent between contract signatories, where these messages correspond to agent behaviours and therefore indicate whether norms are, or are in danger of, being violated.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, where these norms specify the obliged, permitted and prohibited behaviours of agents. Regulation can effectively be achieved through use of enforcement mechanisms that result in a net loss of utility for an agent in cases where the agent's behaviour fails to comply with the norms. Recognition of compliance is thus crucial for achieving regulation. In this paper we propose a generic architecture for observation of agent behaviours, and recognition of these behaviours as constituting, or counting as, compliance or violation. The architecture deploys monitors that receive inputs from observers, and processes these inputs together with transition network representations of individual norms. In this way, monitors determine the fulfillment or violation status of norms. The paper also describes a proof of concept implementation and deployment of monitors in electronic contracting environments.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, where these norms specify the obliged, permitted and prohibited behaviours of agents. Regulation can effectively be achieved through use of enforcement mechanisms that result in a net loss of utility for an agent in cases where the agent’s behaviour fails to comply with the norms. Recognition of compliance is thus crucial for achieving regulation. In this paper we propose a generic architecture for observation of agent behaviours, and recognition of these behaviours as constituting, or counting as, compliance or violation. The architecture deploys monitors that receive inputs from observers, and processes these inputs together with transition network representations of individual norms. In this way, monitors determine the fulfillment or violation status of norms. The paper also describes a proof of concept implementation and deployment of monitors in electronic contracting environments.