6 resultados para Lipschitz trivial
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The practitioners of bioinformatics require increasing sophistication from their software tools to take into account the particular characteristics that make their domain complex. For example, there is a great variation of experience of researchers, from novices who would like guidance from experts in the best resources to use to experts that wish to take greater management control of the tools used in their experiments. Also, the range of available, and conflicting, data formats is growing and there is a desire to automate the many trivial manual stages of in-silico experiments. Agent-oriented software development is one approach to tackling the design of complex applications. In this paper, we argue that, in fact, agent-oriented development is a particularly well-suited approach to developing bioinformatics tools that take into account the wider domain characteristics. To illustrate this, we design a data curation tool, which manages the format of experimental data, extend it to better account for the extra requirements placed by the domain characteristics, and show how the characteristics lead to a system well suited to an agent-oriented view.
Resumo:
The practitioners of bioinformatics require increasing sophistication from their software tools to take into account the particular characteristics that make their domain complex. For example, there is a great variation of experience of researchers, from novices who would like guidance from experts in the best resources to use to experts that wish to take greater management control of the tools used in their experiments. Also, the range of available, and conflicting, data formats is growing and there is a desire to automate the many trivial manual stages of in-silico experiments. Agent-oriented software development is one approach to tackling the design of complex applications. In this paper, we argue that, in fact, agent-oriented development is a particularly well-suited approach to developing bioinformatics tools that take into account the wider domain characteristics. To illustrate this, we design a data curation tool, which manages the format of experimental data, extend it to better account for the extra requirements placed by the domain characteristics, and show how the characteristics lead to a system well suited to an agent-oriented view.
Resumo:
The Grid is a large-scale computer system that is capable of coordinating resources that are not subject to centralised control, whilst using standard, open, general-purpose protocols and interfaces, and delivering non-trivial qualities of service. In this chapter, we argue that Grid applications very strongly suggest the use of agent-based computing, and we review key uses of agent technologies in Grids: user agents, able to customize and personalise data; agent communication languages offering a generic and portable communication medium; and negotiation allowing multiple distributed entities to reach service level agreements. In the second part of the chapter, we focus on Grid service discovery, which we have identified as a prime candidate for use of agent technologies: we show that Grid-services need to be located via personalised, semantic-rich discovery processes, which must rely on the storage of arbitrary metadata about services that originates from both service providers and service users. We present UDDI-MT, an extension to the standard UDDI service directory approach that supports the storage of such metadata via a tunnelling technique that ties the metadata store to the original UDDI directory. The outcome is a flexible service registry which is compatible with existing standards and also provides metadata-enhanced service discovery.
Resumo:
In this paper we describe our system for automatically extracting "correct" programs from proofs using a development of the Curry-Howard process. Although program extraction has been developed by many authors, our system has a number of novel features designed to make it very easy to use and as close as possible to ordinary mathematical terminology and practice. These features include 1. the use of Henkin's technique to reduce higher-order logic to many-sorted (first-order) logic; 2. the free use of new rules for induction subject to certain conditions; 3. the extensive use of previously programmed (total, recursive) functions; 4. the use of templates to make the reasoning much closer to normal mathematical proofs and 5. a conceptual distinction between the computational type theory (for representing programs)and the logical type theory (for reasoning about programs). As an example of our system we give a constructive proof of the well known theorem that every graph of even parity, which is non-trivial in the sense that it does not consist of isolated vertices, has a cycle. Given such a graph as input, the extracted program produces a cycle as promised.
Resumo:
In this paper we describe a new protocol that we call the Curry-Howard protocol between a theory and the programs extracted from it. This protocol leads to the expansion of the theory and the production of more powerful programs. The methodology we use for automatically extracting “correct” programs from proofs is a development of the well-known Curry-Howard process. Program extraction has been developed by many authors, but our presentation is ultimately aimed at a practical, usable system and has a number of novel features. These include 1. a very simple and natural mimicking of ordinary mathematical practice and likewise the use of established computer programs when we obtain programs from formal proofs, and 2. a conceptual distinction between programs on the one hand, and proofs of theorems that yield programs on the other. An implementation of our methodology is the Fred system. As an example of our protocol we describe a constructive proof of the well-known theorem that every graph of even parity can be decomposed into a list of disjoint cycles. Given such a graph as input, the extracted program produces a list of the (non-trivial) disjoint cycles as promised.
Resumo:
The specification of Quality of Service (QoS) constraints over software design requires measures that ensure such requirements are met by the delivered product. Achieving this goal is non-trivial, as it involves, at least, identifying how QoS constraint specifications should be checked at the runtime. In this paper we present an implementation of a Model Driven Architecture (MDA) based framework for the runtime monitoring of QoS properties. We incorporate the UML2 superstructure and the UML profile for Quality of Service to provide abstract descriptions of component-and-connector systems. We then define transformations that refine the UML2 models to conform with the Distributed Management Taskforce (DMTF) Common Information Model (CIM) (Distributed Management Task Force Inc. 2006), a schema standard for management and instrumentation of hardware and software. Finally, we provide a mapping the CIM metamodel to a .NET-based metamodel for implementation of the monitoring infrastructure utilising various .NET features including the Windows Management Instrumentation (WMI) interface.