5 resultados para Knowledge-based asets
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
A crucial concern in the evaluation of evidence related to a major crime is the formulation of sufficient alternative plausible scenarios that can explain the available evidence. However, software aimed at assisting human crime investigators by automatically constructing crime scenarios from evidence is difficult to develop because of the almost infinite variation of plausible crime scenarios. This paper introduces a novel knowledge driven methodology for crime scenario construction and it presents a decision support system based on it. The approach works by storing the component events of the scenarios instead of entire scenarios and by providing an algorithm that can instantiate and compose these component events into useful scenarios. The scenario composition approach is highly adaptable to unanticipated cases because it allows component events to match the case under investigation in many different ways. Given a description of the available evidence, it generates a network of plausible scenarios that can then be analysed to devise effective evidence collection strategies. The applicability of the ideas presented here are demonstrated by means of a realistic example and prototype decision support software.
Resumo:
In the past decade, compositional modelling (CM) has established itself as the predominant knowledge-based approach to construct mathematical (simulation) models automatically. Although it is mainly applied to physical systems, there is a growing interest in applying CM to other domains, such as ecological and socio-economic systems. Inspired by this observation, this paper presents a method for extending the conventional CM techniques to suit systems that are fundamentally presented by interacting populations of individuals instead of physical components or processes. The work supports building model repositories for such systems, especially in addressing the most critical outstanding issues of granularity and disaggregation in ecological systems modelling.
Resumo:
Many solutions to AI problems require the task to be represented in one of a multitude of rigorous mathematical formalisms. The construction of such mathematical models forms a difficult problem which is often left to the user of the problem solver. This void between problem solvers and the problems is studied by the eclectic field of automated modelling. Within this field, compositional modelling, a knowledge-based methodology for system modelling, has established itself as a leading approach. In general, a compositional modeller organises knowledge in a structure of composable fragments that relate to particular system components or processes. Its embedded inference mechanism chooses the appropriate fragments with respect to a given problem, instantiates and assembles them into a consistent system model. Many different types of compositional modeller exist, however, with significant differences in their knowledge representation and approach to inference. This paper examines compositional modelling. It presents a general framework for building and analysing compositional modellers. Based on this framework, a number of influential compositional modellers are examined and compared. The paper also identifies the strengths and weaknesses of compositional modelling and discusses some typical applications.
Resumo:
The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.