19 resultados para Fomenko, Anatoli
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
For first-order Horn clauses without equality, resolution is complete with an arbitrary selection of a single literal in each clause [dN 96]. Here we extend this result to the case of clauses with equality for superposition-based inference systems. Our result is a generalization of the result given in [BG 01]. We answer their question about the completeness of a superposition-based system for general clauses with an arbitrary selection strategy, provided there exists a refutation without applications of the factoring inference rule.
Resumo:
Until recently, First-Order Temporal Logic (FOTL) has been only partially understood. While it is well known that the full logic has no finite axiomatisation, a more detailed analysis of fragments of the logic was not previously available. However, a breakthrough by Hodkinson et al., identifying a finitely axiomatisable fragment, termed the monodic fragment, has led to improved understanding of FOTL. Yet, in order to utilise these theoretical advances, it is important to have appropriate proof techniques for this monodic fragment.In this paper, we modify and extend the clausal temporal resolution technique, originally developed for propositional temporal logics, to enable its use in such monodic fragments. We develop a specific normal form for monodic formulae in FOTL, and provide a complete resolution calculus for formulae in this form. Not only is this clausal resolution technique useful as a practical proof technique for certain monodic classes, but the use of this approach provides us with increased understanding of the monodic fragment. In particular, we here show how several features of monodic FOTL can be established as corollaries of the completeness result for the clausal temporal resolution method. These include definitions of new decidable monodic classes, simplification of existing monodic classes by reductions, and completeness of clausal temporal resolution in the case of monodic logics with expanding domains, a case with much significance in both theory and practice.
Resumo:
We prove the completeness of the regular strategy of derivations for superposition-based calculi. The regular strategy was pioneered by Kanger in [Kan63], who proposed that all equality inferences take place before all other steps in the proof. We show that the strategy is complete with the elimination of tautologies. The implication of our result is the completeness of non-standard selection functions by which in non-relational clauses only equality literals (and all of them) are selected.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. Although a complete and correct resolution-style calculus has already been suggested for this specific fragment, this calculus involves constructions too complex to be of practical value. In this paper, we develop a machine-oriented clausal resolution method which features radically simplified proof search. We first define a normal form for monodic formulae and then introduce a novel resolution calculus that can be applied to formulae in this normal form. By careful encoding, parts of the calculus can be implemented using classical first-order resolution and can, thus, be efficiently implemented. We prove correctness and completeness results for the calculus and illustrate it on a comprehensive example. An implementation of the method is briefly discussed.
Resumo:
First-order temporal logic is a coincise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics have identified important enumerable and even decidable fragments. In this paper we present the first resolution-based calculus for monodic first-order temporal logic. Although the main focus of the paper is on establishing completeness result, we also consider implementation issues and define a basic loop-search algorithm that may be used to guide the temporal resolution system.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
In this paper a state of the art of a system of automated deduction called SAD is described . An architecture of SAD corresponds well to a modern vision of the Evidence Algorithm programme, initiated by Academician V.Glushkov.
Resumo:
We introduce a calculus of stratified resolution, in which special attention is paid to clauses that "define" relations. If such clauses are discovered in the initial set of clauses, they are treated using the rule of definition unfolding, i.e. the rule that replaces defined relations by their definitions. Stratified resolution comes with a powerful notion of redundancy: a clause to which definition unfolding has been applied can be removed from the search space. To prove the completeness of stratified resolution with redundancies, we use a novel combination of Bachmair and Ganzingerâ??s model construction technique and a hierarchical construction of orderings and least fixpoints.
Resumo:
In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described.
Resumo:
The clausal resolution method for propositional linear-time temporal logic is well known and provides the basis for a number of temporal provers. The method is based on an intuitive clausal form, called SNF, comprising three main clause types and a small number of resolution rules. In this paper, we show how the normal form can be radically simplified, and consequently, how a simplified clausal resolutioin method can be defined for this impoprtant variety of logics.
Resumo:
It has been shown recently that monodic first-order temporal logic without functional symbols but with equality is incomplete, i.e., the set of the valid formulae of this logic is not recursively enumerable. In this paper we show that an even simpler fragment consisting of monodic monadic two-variable formulae is not recursively enumerable.
Resumo:
In this paper we show how to extend clausal temporal resolution to the ground eventuality fragment of monodic first-order temporal logic, which has recently been introduced by Hodkinson, Wolter and Zakharyaschev. While a finite Hilbert-like axiomatization of complete monodic first order temporal logic was developed by Wolter and Zakharyaschev, we propose a temporal resolution-based proof system which reduces the satisfiability problem for ground eventuality monodic first-order temporal formulae to the satisfiability problem for formulae of classical first-order logic.
Resumo:
The famous Herbrand's theorem of mathematical logic plays an important role in automated theorem proving. In the first part of this article, we recall the theorem and formulate a number of natural decision problems related to it. Somewhat surprisingly, these problems happen to be equivalent. One of these problems is the so-called simultaneous rigid E-unification problem. In the second part, we survey recent result on the simultaneous rigid E-unification problem.