2 resultados para Execute
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
As scientific workflows and the data they operate on, grow in size and complexity, the task of defining how those workflows should execute (which resources to use, where the resources must be in readiness for processing etc.) becomes proportionally more difficult. While "workflow compilers", such as Pegasus, reduce this burden, a further problem arises: since specifying details of execution is now automatic, a workflow's results are harder to interpret, as they are partly due to specifics of execution. By automating steps between the experiment design and its results, we lose the connection between them, hindering interpretation of results. To reconnect the scientific data with the original experiment, we argue that scientists should have access to the full provenance of their data, including not only parameters, inputs and intermediary data, but also the abstract experiment, refined into a concrete execution by the "workflow compiler". In this paper, we describe preliminary work on adapting Pegasus to capture the process of workflow refinement in the PASOA provenance system.
Resumo:
It is rare for data's history to include computational processes alone. Even when software generates data, users ultimately decide to execute software procedures, choose their configuration and inputs, reconfigure, halt and restart processes, and so on. Understanding the provenance of data thus involves understanding the reasoning of users behind these decisions, but demanding that users explicitly document decisions could be intrusive if implemented naively, and impractical in some cases. In this paper, therefore, we explore an approach to transparently deriving the provenance of user decisions at query time. The user reasoning is simulated, and if the result of the simulation matches the documented decision, the simulation is taken to approximate the actual reasoning. The plausibility of this approach requires that the simulation mirror human decision -making, so we adopt an automated process explicitly modelled on human psychology. The provenance of the decision is modelled in OPM, allowing it to be queried as part of a larger provenance graph, and an OPM profile is provided to allow consistent querying of provenance across user decisions.