14 resultados para Constraint handling
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.
Resumo:
Electronic contracts are a means of representing agreed responsibilities and expected behaviour of autonomous agents acting on behalf of businesses. They can be used to regulate behaviour by providing negative consequences, penalties, where the responsibilities and expectations are not met, i.e. the contract is violated. However, long-term business relationships require some flexibility in the face of circumstances that do not conform to the assumptions of the contract, that is, mitigating circumstances. In this paper, we describe how contract parties can represent and enact policies on mitigating circumstances. As part of this, we require records of what has occurred within the system leading up to a violation: the provenance of the violation. We therefore bring together contract-based and provenance systems to solve the issue of mitigating circumstances.