7 resultados para Case Based Reasoning
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
The requirement for Grid middleware to be largely transparent to individual users and at the same time act in accordance with their personal needs is a difficult challenge. In e-science scenarios, users cannot be repeatedly interrogated for each operational decision made when enacting experiments on the Grid. It is thus important to specify and enforce policies that enable the environment to be configured to take user preferences into account automatically. In particular, we need to consider the context in which these policies are applied, because decisions are based not only on the rules of the policy but also on the current state of the system. Consideration of context is explicitly addressed, in the agent perspective, when deciding how to balance the achievement of goals and reaction to the environment. One commonly-applied abstraction that balances reaction to multiple events with context-based reasoning in the way suggested by our requirements is the belief-desire-intention (BDI) architecture, which has proven successful in many applications. In this paper, we argue that BDI is an appropriate model for policy enforcement, and describe the application of BDI to policy enforcement in personalising Grid service discovery. We show how this has been implemented in the myGrid registry to provide bioinformaticians with control over the services returned to them by the service discovery process.
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
Of the ways in which agent behaviour can be regulated in a multiagent system, electronic contracting – based on explicit representation of different parties' responsibilities, and the agreement of all parties to them – has significant potential for modern industrial applications. Based on this assumption, the CONTRACT project aims to develop and apply electronic contracting and contract-based monitoring and verification techniques in real world applications. This paper presents results from the initial phase of the project, which focused on requirements solicitation and analysis. Specifically, we survey four use cases from diverse industrial applications, examine how they can benefit from an agent-based electronic contracting infrastructure and outline the technical requirements that would be placed on such an infrastructure. We present the designed CONTRACT architecture and describe how it may fulfil these requirements. In addition to motivating our work on the contract-based infrastructure, the paper aims to provide a much needed community resource in terms of use case themselves and to provide a clear commercial context for the development of work on contract-based system.