1 resultado para COLLECTION SYSTEM
em Department of Computer Science E-Repository - King's College London, Strand, London
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (13)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (9)
- Center for Jewish History Digital Collections (2)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (63)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (34)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (9)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (28)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Queensland University of Technology - ePrints Archive (582)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (16)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- University of Connecticut - USA (1)
- University of Michigan (25)
- University of Queensland eSpace - Australia (2)
- University of Washington (2)
Resumo:
Consideration of a wide range of plausible crime scenarios during any crime investigation is important to seek convincing evidence and hence to minimize the likelihood of miscarriages of justice. It is equally important for crime investigators to be able to employ effective and efficient evidence-collection strategies that are likely to produce the most conclusive information under limited available resources. An intelligent decision support system that can assist human investigators by automatically constructing plausible scenarios, and reasoning with the likely best investigating actions will clearly be very helpful in addressing these challenging problems. This paper presents a system for creating scenario spaces from given evidence, based on an integrated application of techniques for compositional modelling and Bayesian network-based evidence evaluation. Methods of analysis are also provided by the use of entropy to exploit the synthesized scenario spaces in order to prioritize investigating actions and hypotheses. These theoretical developments are illustrated by realistic examples of serious crime investigation.