12 resultados para Bladder Calculi

em Department of Computer Science E-Repository - King's College London, Strand, London


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the completeness of the regular strategy of derivations for superposition-based calculi. The regular strategy was pioneered by Kanger in [Kan63], who proposed that all equality inferences take place before all other steps in the proof. We show that the strategy is complete with the elimination of tautologies. The implication of our result is the completeness of non-standard selection functions by which in non-relational clauses only equality literals (and all of them) are selected.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments including the guarded fragment with equality. In this paper, we specialise the monodic resolution method to the guarded monodic fragment with equality and first-order temporal logic over expanding domains. We introduce novel resolution calculi that can be applied to formulae in the normal form associated with the clausal resolution method, and state correctness and completeness results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of a research programme Evidence Algorithm is a development of an open system of automated proving that is able to accumulate mathematical knowledge and to prove theorems in a context of a self-contained mathematical text. By now, the first version of such a system called a System for Automated Deduction, SAD, is implemented in software. The system SAD possesses the following main features: mathematical texts are formalized using a specific formal language that is close to a natural language of mathematical publications; a proof search is based on special sequent-type calculi formalizing natural reasoning style, such as application of definitions and auxiliary propositions. These calculi also admit a separation of equality handling from deduction that gives an opportunity to integrate logical reasoning with symbolic calculation.