9 resultados para Autonomous robots systems
em Department of Computer Science E-Repository - King's College London, Strand, London
Resumo:
Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.
Resumo:
Agent-oriented cooperation techniques and standardized electronic healthcare record exchange protocols can be used to combine information regarding different facets of a therapy received by a patient from different healthcare providers at different locations. Provenance is an innovative approach to trace events in complex distributed processes, dependencies between such events, and associated decisions by human actors. We focus on three aspects of provenance in agent-mediated healthcare systems: first, we define the provenance concept and show how it can be applied to agent-mediated healthcare applications; second, we investigate and provide a method for independent and autonomous healthcare agents to document the processes they are involved in without directly interacting with each other; and third, we show that this method solves the privacy issues of provenance in agent-mediated healthcare systems.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, and may be encoded in electronic contracts in order to specify the obliged, permitted and prohibited behaviours of agents that are signatories to such contracts. Enactment and management of electronic contracts thus enables the use of regulatory mechanisms to ensure that agent behaviours comply with the encoded norms. To facilitate such mechanisms requires monitoring in order to detect and explain violation of norms. In this paper we propose a framework for monitoring that is to be implemented and integrated into a suite of contract enactment and management tools. The framework adopts a non-intrusive approach to monitoring, whereby the states of a contract with respect to its contained norms can be inferred on the basis of messages exchanged. Specifically, the framework deploys agents that observe messages sent between contract signatories, where these messages correspond to agent behaviours and therefore indicate whether norms are, or are in danger of, being violated.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, where these norms specify the obliged, permitted and prohibited behaviours of agents. Regulation can effectively be achieved through use of enforcement mechanisms that result in a net loss of utility for an agent in cases where the agent's behaviour fails to comply with the norms. Recognition of compliance is thus crucial for achieving regulation. In this paper we propose a generic architecture for observation of agent behaviours, and recognition of these behaviours as constituting, or counting as, compliance or violation. The architecture deploys monitors that receive inputs from observers, and processes these inputs together with transition network representations of individual norms. In this way, monitors determine the fulfillment or violation status of norms. The paper also describes a proof of concept implementation and deployment of monitors in electronic contracting environments.
Resumo:
The behaviours of autonomous agents may deviate from those deemed to be for the good of the societal systems of which they are a part. Norms have therefore been proposed as a means to regulate agent behaviours in open and dynamic systems, where these norms specify the obliged, permitted and prohibited behaviours of agents. Regulation can effectively be achieved through use of enforcement mechanisms that result in a net loss of utility for an agent in cases where the agent’s behaviour fails to comply with the norms. Recognition of compliance is thus crucial for achieving regulation. In this paper we propose a generic architecture for observation of agent behaviours, and recognition of these behaviours as constituting, or counting as, compliance or violation. The architecture deploys monitors that receive inputs from observers, and processes these inputs together with transition network representations of individual norms. In this way, monitors determine the fulfillment or violation status of norms. The paper also describes a proof of concept implementation and deployment of monitors in electronic contracting environments.
Resumo:
A system built in terms of autonomous agents may require even greater correctness assurance than one which is merely reacting to the immediate control of its users. Agents make substantial decisions for themselves, so thorough testing is an important consideration. However, autonomy also makes testing harder; by their nature, autonomous agents may react in different ways to the same inputs over time, because, for instance they have changeable goals and knowledge. For this reason, we argue that testing of autonomous agents requires a procedure that caters for a wide range of test case contexts, and that can search for the most demanding of these test cases, even when they are not apparent to the agents’ developers. In this paper, we address this problem, introducing and evaluating an approach to testing autonomous agents that uses evolutionary optimization to generate demanding test cases.
Resumo:
Of the ways in which agent behaviour can be regulated in a multiagent system, electronic contracting – based on explicit representation of different parties' responsibilities, and the agreement of all parties to them – has significant potential for modern industrial applications. Based on this assumption, the CONTRACT project aims to develop and apply electronic contracting and contract-based monitoring and verification techniques in real world applications. This paper presents results from the initial phase of the project, which focused on requirements solicitation and analysis. Specifically, we survey four use cases from diverse industrial applications, examine how they can benefit from an agent-based electronic contracting infrastructure and outline the technical requirements that would be placed on such an infrastructure. We present the designed CONTRACT architecture and describe how it may fulfil these requirements. In addition to motivating our work on the contract-based infrastructure, the paper aims to provide a much needed community resource in terms of use case themselves and to provide a clear commercial context for the development of work on contract-based system.