773 resultados para KCl
Resumo:
This paper provides a semantics for the UML-RSDS (Reactive System Development Support) subset of UML, using the real-time action logic (RAL) formalism. We show how this semantics can be used to resolve some ambiguities and omissions in UML semantics, and to support reasoning about specifications using the B formal method and tools. We use `semantic profiles' to provide precise semantics for different semantic variation points of UML. We also show how RAL can be used to give a semantics to notations for real-time specification in UML. Unlike other approaches to UML semantics, which concentrate on the class diagram notation, our semantic representation has behaviour as a central element, and can be used to define semantics for use cases, state machines and interactions, in addition to class diagrams.
Resumo:
A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.
Resumo:
A crucial aspect of evidential reasoning in crime investigation involves comparing the support that evidence provides for alternative hypotheses. Recent work in forensic statistics has shown how Bayesian Networks (BNs) can be employed for this purpose. However, the specification of BNs requires conditional probability tables describing the uncertain processes under evaluation. When these processes are poorly understood, it is necessary to rely on subjective probabilities provided by experts. Accurate probabilities of this type are normally hard to acquire from experts. Recent work in qualitative reasoning has developed methods to perform probabilistic reasoning using coarser representations. However, the latter types of approaches are too imprecise to compare the likelihood of alternative hypotheses. This paper examines this shortcoming of the qualitative approaches when applied to the aforementioned problem, and identifies and integrates techniques to refine them.
Resumo:
This paper describes the development of a new approach to the use of ICT for the teaching of courses in the interpretation and evaluation of evidence. It is based on ideas developed for the teaching of science to school children, in particular the importance of models and qualitative reasoning skills. In the first part, we make an analysis of the basis of current research into “evidence scholarship” and the demands such a system would have to meet. In the second part, we introduce the details of such a system that we developed initially to assist police in the interpretation of evidence.
Resumo:
In the past decade, compositional modelling (CM) has established itself as the predominant knowledge-based approach to construct mathematical (simulation) models automatically. Although it is mainly applied to physical systems, there is a growing interest in applying CM to other domains, such as ecological and socio-economic systems. Inspired by this observation, this paper presents a method for extending the conventional CM techniques to suit systems that are fundamentally presented by interacting populations of individuals instead of physical components or processes. The work supports building model repositories for such systems, especially in addressing the most critical outstanding issues of granularity and disaggregation in ecological systems modelling.
Resumo:
Consideration of a wide range of plausible crime scenarios during any crime investigation is important to seek convincing evidence and hence to minimize the likelihood of miscarriages of justice. It is equally important for crime investigators to be able to employ effective and efficient evidence-collection strategies that are likely to produce the most conclusive information under limited available resources. An intelligent decision support system that can assist human investigators by automatically constructing plausible scenarios, and reasoning with the likely best investigating actions will clearly be very helpful in addressing these challenging problems. This paper presents a system for creating scenario spaces from given evidence, based on an integrated application of techniques for compositional modelling and Bayesian network-based evidence evaluation. Methods of analysis are also provided by the use of entropy to exploit the synthesized scenario spaces in order to prioritize investigating actions and hypotheses. These theoretical developments are illustrated by realistic examples of serious crime investigation.
Resumo:
Many solutions to AI problems require the task to be represented in one of a multitude of rigorous mathematical formalisms. The construction of such mathematical models forms a difficult problem which is often left to the user of the problem solver. This void between problem solvers and the problems is studied by the eclectic field of automated modelling. Within this field, compositional modelling, a knowledge-based methodology for system modelling, has established itself as a leading approach. In general, a compositional modeller organises knowledge in a structure of composable fragments that relate to particular system components or processes. Its embedded inference mechanism chooses the appropriate fragments with respect to a given problem, instantiates and assembles them into a consistent system model. Many different types of compositional modeller exist, however, with significant differences in their knowledge representation and approach to inference. This paper examines compositional modelling. It presents a general framework for building and analysing compositional modellers. Based on this framework, a number of influential compositional modellers are examined and compared. The paper also identifies the strengths and weaknesses of compositional modelling and discusses some typical applications.