48 resultados para Biosensor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m(-1), and a specific capacity of 136.8 F g(-1) after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 10(3)μA mM(-1) cm(-2) was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption of metal nanoparticles is at the heart of many chemical and biosensor techniques, but there are few approaches that can provide quantitative characterisation of individual nanoparticle films fabricated at different times and/or under different conditions. Using synthesised gold nanoparticles (Au NPs) as a model, the nanoparticle films were investigated using an optical interferometry technique known as fringes of equal chromatic order (FECO), which was further systematically validated against both in situ quartz crystal microbalance (QCM) and ex situ atomic force microscopy (AFM) measurements. The results indicate that the FECO wavelengths has a quantifiable red shift with increasing particle densities, making it possible to quantify the degree of surface coverage via the analysis of the fringe shift at a fixed fringe order. Moreover, the calculated formula between the FECO shifts and the surface coverage allows quantitative analysis of the whole adsorption kinetics investigated. Particularly, the as-proposed FECO technique can successfully monitor the Au NP adsorption in situ, which could be a new versatile technology platform for “online” monitoring method, for example in biosensor applications using Au NP-tagged analytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer is one of the most diagnosed cancers which leads to a considerable number of deaths due to the lack of early and sensitive detection. This paper presents an aptamer functionalized field effect (FET) based biosensor for the detection of prostate cancer. Prostate specific antigen (PSA) is considered as the biomarker for prostate cancer whose detection is confirmed by attaching aptamers onto the sensor surface. Through the modelling and numerical simulation, the paper aims to evaluate and predict the performance parameters such as sensitivity, settling time, and limit of detection (LOD) of a label-free FET based electronic biosensor. Various sensor parameters such as structure (i.e., geometry), type of the FET (e.g., nanowire FET, spherical FET, ion-selective FET, and magnetic particle) radius of the FET channel and incubation time are optimized and analyzed. In addition, concentration of analyte biomolecules, diffusion coefficients and affinity to the receptor molecules are also investigated to determine the optimize performance parameters.