48 resultados para Biosensor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deficiencies in the design of surface plasmon resonance (SPR) systems that are reported in numerous published works consistently identify the optics assembly as the main problem in the miniaturization of SPR sensors for integration into biosensor systems. This paper presents a novel design of a grating coupled optical waveguide surface plasmon (SP) excitation mechanism, investigated with the intention of addressing the problems associated with using the traditional prism input-output light coupling approach. Computational multiphysics modeling and simulation of the design is carried out. The results are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, first the fundamental concept of nano-optical biosensing is studied. Since Raman scattered signal is very weak to be recognized by current measuring equipments, the signal must be amplified. SPR and LSPR are utilized to enhance the incident field of the target molecules, to improve the sensitivity of the sensor. The paper focuses on the use of LSPR to enhance Raman signal in SERS technology. Different structures of nano-particles in LSPR to improve enhancement of the SERS signal are reviewed and compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new enzymeless glucose sensor has been fabricated via electrospinning technology and subsequent calcination. The morphology and structure of the as-prepared nanofibers have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic oxidation of glucose in alkaline medium at nickel oxide modified glassy carbon electrodes has been investigated. The modified electrodes offer excellent electrocatalytic activity toward the glucose oxidation at low positive potential (0.3 V). Glucose has been determined chronoamperometrically at the surface of NiO nanofibers modified electrode in 0.5 mM NaOH. Under the optimized condition, the calibration curve is linear in the concentration range of 2 × 10−3 mM∼1 mM, and 1 mM∼9.5 mM. The detection limit (signal-to-noise 3) and response time are 3.394 × 10−6 M and 2 s, respectively. The NiO electrospun nanofibers is easy to prepare and feasible in economy. The modified electrode is steady and can be used repeatedly, so it is reasonable to expect its broad use in non-enzymatic glucose sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) biosensors are employed to detect target biomolecules which have particular resonance wavelengths. Accordingly, tunability of the LSPR wavelength is essential in designing LSPR devices. LSPR devices employing silver nano-particles present better efficiencies than those using other noble metals such as gold; however, silver nano-particles are easily oxidized when they come in contact with liquids, which is inevitable in biosensing applications. To attain both durability and tunabilty in a LSPR biosensor, this paper proposes alumina (AL2O3) capped silver nano-disks. It is shown that through controlling the thickness of the cap, the LSPR resonance frequency can be finely tuned over a wide range; and moreover, the cap protects silver nano-particles from oxidation and high temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosensors are projected to find many applications due to their high selectivity and sensitivity, rapid reaction, economy and ease of handling in field measurements. Even though biosensors for a wide range of environmental pollutants have been extensively reported in the literature, the decision to develop a suitable biosensing system that can be approved by a regulatory perspective for environmental applications is fraught with technical issues. These issues mainly concern the biological recognition element, the physico-chemical transducer and the interfaces between the biological and the physical components, but also aspects of fluidics, electronics, and software for data processing. This article focused on the development of microbial-based biosensors for environmental applications especially metal contaminants such as arsenic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosensor has rapidly become essential analytical tools, since they offer higher performance in terms of sensitivity and selectively than any other currently available diagnostic device. The development of biosensor technology represents a crucial task for environmental pollution management, there is a considerable need to project and realize biosensors with the best features for commercialization, such as selectivity, sensitivity, stability, reproducibility and low cost. With appropriate progress testing and commercialization, biosensors will have an important impact on environmental monitoring, reducing costs and increasing the efficiency of certain applications. The same multiple approach might be used for development of biosensor platforms suitable for use in fields as diverse as environmental and agrifood to industry, research security and defence, medical and clinical. This review paper focussed on the various types of biosensors and applications in environmental monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly sensitive and selective dopamine sensor was fabricated with the unique 3D carbon nanotube nanoweb (CNT-N) electrode. The as-synthesised CNT-N was modified by oxygen plasma to graft functional groups in order to increase selective electroactive sites at the CNT sidewalls. This electrode was characterized physically and electrochemically using HRSEM, Raman, FT-IR, and cyclic voltammetry (CV). Our investigations indicated that the O2-plasma treated CNT-N electrode could serve as a highly sensitive biosensor for the selective sensing of dopamine (DA, 1 μM to 20 μM) in the presence of ascorbic acid (AA, 1000 μM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptides have been used as components in biological analysis and fabrication of novel biosensors for a number of reasons, including mature synthesis protocols, diverse structures and as highly selective substrates for enzymes. Bio-conjugation strategies can provide an efficient way to convert interaction information between peptides and analytes into a measurable signal, which can be used for fabrication of novel peptide-based biosensors. Many sensitive fluorophores can respond rapidly to environmental changes and stimuli manifest as a change in spectral characteristics, hence environmentally-sensitive fluorophores have been widely used as signal markers to conjugate to peptides to construct peptide-based molecular sensors. Additionally, nanoparticles, fluorescent polymers, graphene and near infrared dyes are also used as peptide-conjugated signal markers. On the other hand, peptides may play a generalist role in peptide-based biosensors. Peptides have been utilized as bio-recognition elements to bind various analytes including proteins, nucleic acid, bacteria, metal ions, enzymes and antibodies in biosensors. The selectivity of peptides as an enzymatic substrate has thus been utilized to construct enzyme sensors or enzyme-activity sensors. In addition, progress on immobilization and microarray techniques of peptides has facilitated the progress and commercial application of chip-based peptide biosensors in clinical diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monitoring of lead (II) ions (Pb(2+)) in water is essential for both human health and the environment. Herein, a simple yet innovative biosensor for Pb(2+) detection is presented. The sensor is developed by the self-assembly of gold nanoparticles (GNPs) core-satellite structure using naturally occurring tripeptide glutathione (GSH) as linker. The addition of Pb(2+) caused a red-to-blue color change and the localized surface plasmon resonance (LSPR) band was shifted to ca. 650nm. The limit of detection (LOD) is found to be 47.6nM (9.9ppb) by UV-vis spectroscopy with high selectivity against other heavy metals. This method offers a new strategy for heavy metal detection using functionalized GNPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aptamers enhance flexibility in biosensor design. An aptasensor employs aptamers as a biological recognition element for biosensing. This paper presents design, fabrication, and evaluation of a microcantilever aptasensor. To identify and avoid potential bottlenecks in the aptasensor design, the parameters of the aptasensor are investigated through modelling and simulation. Next, thin SU-8 microcantilevers are fabricated to form the aptasensor. Characterization of the fabricated aptasensor is presented. Next, a plasma-based surface funtionalisation method is used to immobilize aptamers on the atasensor. Finally, an evaluation of the performance of the aptasensor is performed through detection of thrombin molecules. The evaluation results are presented and discussed. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphite and numerous graphitic-derived micro- and nano-particles have gained importance in current materials science research. These two-dimensional sheets of sp(2)-hybridized carbon atoms remarkably influence the properties of polymers. Graphene mono-layers, graphene oxides, graphite oxides, exfoliated graphite, and other related materials are derived from a parental graphite structure. In this review, we focus primarily on the role of these fillers in regulating the electrical and sensing properties of polymer composites. It has been demonstrated that the addition of an optimized mixture of graphene and or its derivatives to various polymers produces a record-high enhancement of the electrical conductivity and achieved semiconducting characteristics at small filler loading, making it suitable for sensor manufacture. Promising sensing characteristics are observed in graphite-derived composite films compared with those of micro-sized composites and the properties are explained mainly based on the filler volume fraction, nature and rate of dispersion and the filler polymer interactions at the interface. In short, this critical review aims to provide a thorough understanding of the recent advances in the area of graphitic-based polymer composites in advanced electronics. Future perspectives in this rapidly developing field are also discussed.