62 resultados para yarns and twines

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a range of carefully selected wool and cashmere yarns as well as their blends were used to examine the effects of fiber curvature and blend ratio on yarn hairiness. The results indicate that yarns spun from wool fibers with a higher curvature have lower yarn hairiness than yarns spun from similar wool of a lower curvature. For blend yarns made from wool and cashmere of similar diameter, yarn hairiness increases with the increase in the cashmere content in the yarn. This is probably due to the presence of increased proportion of the shorter cashmere fibers in the surface regions of the yarn, leading to increased yarn hairiness. A modified hairiness composition model is used to explain these results and the likely origin of leading and trailing hairs. This model highlights the importance of yarn surface composition on yarn hairiness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis propsed a novel method to produce and characterise nanofibre yarns and composites.  It contributed to the fundamental research in the field of nanofibre yarns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling through carbon nanotube (CNT) yarns and bucky-papers followed by scanning electron microscopy has recently emerged as a powerful tool for eliciting details of their internal structure. The internal arrangement of CNTs in bucky-papers and yarns directly affects their performance and characteristics. Consequently this information is critical for further optimisation of these structures and to tailor their properties for specific applications. This chapter describes in detail FIB milling of CNT yarns and bucky-papers and gives a range of examples where FIB milling has enabled a better understanding of how processing conditions and treatments affect the internal structure. Emphasis is placed on how FIB milling elucidates the influence of fabrication conditions on the internal arrangement of CNTs and how this influences the material's macroscopic properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study focused on the hairiness of worsted wool yarns and how it affects the pilling propensity of knitted wool fabrics. Conventional worsted ring spun yarns were compared with comparable SolospunTM yarns and yarns modified with a hairiness reducing air nozzle in the winding process (JetWind). Measurements of yarn hairiness (S3) on the Zweigle G565 hairiness meter showed a reduction in the S3 value of approximately 46% was achieved using SolospunTM ring spinning attachment and a 33% reduction was achieved using the JetWind process. Interestingly, subsequent evaluation of the pilling performance of fabrics made from the SolospunTM spun yarn and JetWind modified yarn showed a half grade and full grade improvement, respectively over a similar fabric made from conventional ring spun yarns. This result suggested that a relatively large reduction in yarn hairiness was needed to achieve a moderate improvement in fabric pilling, and that the nature of yarn hairiness was also a key factor in influencing fabric pilling propensity. It is postulated that the wrapping of surface hairs by the air vortex in the JetWind process may limit the ability of those surface fibers to form fuzz and reach the critical height required for pill formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter describes two modifications made to the conventional ring spinning technology, termed Sirospun™ and Solospun™, which were primarily aimed at significantly reducing the production cost of fabrics. Both were invented at CSIRO in Australia, hence the name ‘Siro’ spinning. The properties of Sirospun and Solospun yarns are different from those of conventional ring-spun yarns and this has opened new market opportunities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The prickle evoked by 48 knitted fabrics was assessed by wearers under a defined evaluation protocol. The relationship between the average wearer prickle score and known properties of constituent fibre, yarns and fabrics and fabric evaluation using the Wool ComfortMeter (WCM) was determined using linear modelling. After log transformation, the best model accounted for 87.7% of the variance. The major share of variation could be attributed to differences between mean fibre diameter (MFD) and WCM values. Low prickle scores were linearly associated with lower MFD, lower WCM and lower yarn linear density. There was an indication that yarn twist affected prickle scores and that fabrics composed of cotton evoked less prickle. Measures of fibre diameter distribution or coarse fibre incidence and other fabric properties were not significant. The analysis indicates that wool garments can be constructed to keep wearer assessed prickle to barely detectable levels and textile designers can manipulate a range of parameters to achieve similar wearer comfort responses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 Improving ultraviolet (UV) protection of textiles is essential to protect wearers against UV radiation induced risks. In addition to fabric parameters, yarn parameters are important factors affecting UV protection of textiles. This work is to examine the influence of yarn parameters on UV protection in order to set up a statistical model for predicting the UV protection of yarns. Wool yarns with different variables were used to test the ultraviolet protection factor (UPF) values for data analysis and the model verification. The model provides the optimized parameters for the UV protective fabric design. This work is helpful as a pre-cursor to the development of a more advanced optical model, which will look at understanding the penetration of UV light through fibres, yarns and fabrics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Wool ComfortMeter is the first simple and fast objective tool in the world for assessing wool fabric prickle propensity. IWTO-DTM-66 for the measurement of fabrics using the WCM was accepted at the IWTO Cape Town Congress, South Africa in 2014. Since then, interest has been shown in the technology by yarn manufacturers and buyers for testing yarns before fabric is made, in order to obtain the prickle propensity of a fabric while still at yarn stage.Presentation of the yarn sample to the Wool ComfortMeter is critical. An YG381 yarn winder was selected for this project because it is a fast and reliable tool for sample preparation. The investigation into yarn winding density and tension showed that both the winding density and tension did not significantly affect the tested yarn WCM values. Therefore, a sample preparation protocol was established by using a winding density 19 loops/cm and a 20g tension plate on the YG381 winding machine.Further examination by complying with the preparation protocol showed that yarn Wool ComfortMeter value was the only significant predictor of its corresponding fabric Wool ComfortMeter value. Thus, liner and polynomial regression models were developed for predicting the fabric WCM prickle propensity. Based on the prediction performance, a linear model was recommended for the 1-ply yarns and polynomial model for the 2-ply yarns in this report. The prediction errors were approximately 66 for the 1-ply yarns and 14 for the 2-ply yarns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yarn tension is a key factor that affects the efficiency of a ring spinning system. In this paper, a specially constructed rig, which can rotate a yarn at a high speed without inserting any real twist into the yarn, was used to simulate a ring spinning process. Yarn tension was measured at the guide-eye during the simulated spinning of different yarns at various balloon heights and with varying yarn length in the balloon. The effect of balloon shape, yarn hairiness and thickness, and yarn rotating speed, on the measured yarn tension, was examined. The results indicate that the collapse of balloon shape from single loop to double loop, or from double loop to triple etc, lead to sudden reduction in yarn tension. Under otherwise identical conditions, a longer length of yarn in the balloon gives a lower yarn tension at the guide-eye. In addition, thicker yarns and/or more hairy yarns generate a higher tension in the yarn, due to the increased air drag acting on the thicker or more hairy yarns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yarn hairiness affects not only the quality of products, but also the productivity in spinning and weaving. Too much yarn hairiness is undesirable for many end uses as well as the spinning and post spinning processes. The main aims of this project are to examine the hairiness features of various yarns and to reduce yarn hairiness. The thesis covers five related areas – hairiness assessment, factors affecting yarn hairiness, the hairiness of newly developed yarns, yarn hairiness reduction, and effect of yarn hairiness on the energy consumption in ring spinning. The worsted cashmere, pure wool and wool/cashmere blend yarns were employed to investigate the effect of some fibre parameters on the yarn hairiness. A single exponential distribution of the hair-length was confirmed first, using the data from the Zweigle G565 Hairiness Meter. A linear relationship was observed between the blend ratio and the hairiness indexes. In particular, the effect of fibre crimp or curvature on yarn hairiness is examined. The theory of yarn hairiness composition was also developed further. The effect of draft ratio and spindle speed on the hairiness of worsted wool yarn was examined next with a factorial experiment design. Several new hairiness indexes, namely the relative hairiness indexes, have been used to explain the results obtained. In the investigation of the hairiness of newly developed yarns, the hairiness of the Compact Spun and Roller-Jet-Spun yarns was examined first. The composition of the yarn hairiness, the hair-length distribution, and the effect of test speed on yarn hairiness were then studied. An important finding is that for both yarns, the predominant hairiness feature is the looped hairs. A comparison of the hairiness of Solospun yarns and the equivalent ring spun wool yarns was undertaken. The hair-length distribution of the Solospun yarn was examined first. The Solospun yarns used had fewer hairs in most hair-length groups and lower variations in hairiness. In addition, the effect of twist level and spindle speed on the hairiness of Solospun and conventional ring spun yarns has also been discussed. A novel approach of reducing yarn hairiness – spinning with a ‘Diagonal’ yarn path was examined next. Both ‘Left Diagonal’ and ‘Right Diagonal’ yarn arrangements were studied. A new finding is that the ‘Right Diagonal’ yarn path leads to reduced hairiness for the Z-twist yarn, while yarn evenness and tenacity are not as sensitive to the modified yarn path. The mechanism of hairiness reduction with the ‘Diagonal’ yarn path has been discussed. The spinning performance of “Right Diagonal” yarn arrangement has also been evaluated. Finally, the effect of yarn hairiness on the energy consumption in ring spinning has been investigated theoretically and experimentally. A theoretical model has been developed, which represents the first attempt at theoretically investigating the influence of yarn hairiness on energy consumption during the winding stage of ring spinning. The experimental results have generally confirmed predictions of this model. Recommendations for further research in this area have also been made in the concluding chapter of this thesis.