18 resultados para vinylene carbonate

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids (ILs) form a novel class of electrolytes with unique properties that make them attractive candidates for electrochemical devices. In the present study a range of electrolytes were prepared based on the IL N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl) amide ([C3mpyr][NTf2]) and LiNTf2 salt. The traditional organic solvent diluents vinylene carbonate (VC), ethylene carbonate (EC), tetrahydrofuran (THF) and toluene were used as additives at two concentrations, 10 and 20 mol%, leading to a ratio of about 0.6 and 1.3 diluent molecules to lithium ions, respectively. Most promisingly, the lithium ions see the greatest effect in the presence of all the diluents, except toluene, producing a lithium self-diffusion coefficient of almost a factor of 2.5 times greater for THF at 20 mol%. Raman spectroscopy subtly indicates that THF may be effectively breaking up a small portion of the lithium ion–anion interaction. While comparing the measured molar conductivity to that calculated from the self-diffusion coefficients of the constituents indicates that the diluents cause an increase in the overall ion clustering. This study importantly highlights that selective ion transport enhancement is achievable in these materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemistry of lithium is investigated in a number of electrolytes that consist of a lithium salt dissolved in a combined ionic liquid-organic diluent medium. We find that ethylene carbonate and vinylene carbonate improve electrochemical behaviour, while toluene and tetrahydrofuran are less promising.We also present insights into the electrode passivation caused by these diluents in an ionic liquid electrolyte during lithium cycling. We observe that during lithium cycling those electrolytes with carbonate based diluents are the most able to utilise their previously reported improved lithium ion diffusivities. Conversely, tetrahydrofuran, the most promising diluent of those studied in terms of its known ability to increase lithium ion diffusivity is found not to be as advantageous as a diluent. It appears that the poor electrochemical interfacial properties of the tetrahydrofuran electrolyte prevented the realisation of the benefits of the high solution lithium ion diffusivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polyterthiophene (PTTh)/multi-walled carbon nanotube (CNT) composite was synthesised by in situ chemical polymerisation and used as an active cathode material in lithium cells assembled with an ionic liquid (IL) or conventional liquid electrolyte, LiBF4/EC–DMC–DEC. The IL electrolyte consisted of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) containing LiBF4 and a small amount of vinylene carbonate (VC). The lithium cells were characterised by cyclic voltammetry (CV) and galvanostatic charge/discharge cycling. The specific capacity of the cells with IL and conventional liquid electrolytes after the 1st cycle was 50 and 47 mAh g−1 (based on PTTh weight), respectively at the C/5 rate. The capacity retention after the 100th cycle was 78% and 53%, respectively. The lithium cell assembled with a PTTh/CNT composite cathode and a non-flammable IL electrolyte exhibited a mean discharge voltage of 3.8 V vs Li+/Li and is a promising candidate for high-voltage power sources with enhanced safety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the properties of 1 wt.% vinylene carbonate, vinyl ethylene carbonate, and diphenyloctyl phosphate additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. The additive electrolytes were dominant both in surface formation and internal resistance. In particular, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that diphenyloctyl phosphate is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peculiar Early Permian palaeontological and sedimentological features are reviewed from South China, including characteristic Early Permian cold-water Gondwanan brachiopod taxa and faunas from Sichuan and Guizhou provinces, widespread rosettes and irregular aggregates of calcite prisms ('Chrysanthemum Stones') within the Qixia limestones, and lack of significant Early Permian reef buildups. The occurrences of these features are at odds with the currently widely held view that South China was located in a palaeotropical, warm-water setting throughout the Permian and hence harboured a highly diverse shallow marine biota. In this paper, I propose a working hypothesis, suggesting that influence of at least cool water masses may have intermittently occurred in South China during the Early Permian, which facilitated the formation of the cool water-influenced palaeontological and sedimentological features and promoted the interchanges of cool to cold water marine faunas between the Gondwanan and Boreal Realms. These cool water masses may have been transported to low-latitude regions as deep currents from northern and eastern shelves of Gondwanaland and upwelled along the western coast of South China as well as within the relatively deep-water basins of central South China. Prevalence of these meridional, north-directed deep cold water currents during the Early Permian may have been related to the glaciation event of Gondwanaland. An alternative and/or additional source of cooling may have also originated from strong easterly palaeoequatorial boundary currents operating within the Palaeotethys at times during the Early Permian, inducing and/or enhancing upwelling of cool to cold water masses in the eastern Palaeotethys. This latter scenario is analogous to the occasional 'La Nina' effect (opposite to the 'El Nino' effect) at the equatorial belt of the modern Pacific Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, [Sn2Te2(C4H9)4(CO3)2O2(C8H10N)4]·4CHCl3 or [(p-Me2NC6H4)2TeOSntBu2CO3]2·4CHCl3, contains an almost planar centrosymmetric inorganic Sn2Te2O8C2 core and hypercoordinated Sn and Te atoms. The structure features four secondary intramolecular Te...O contacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New polymer electrolytes were synthesized and characterized based on a new polymer host. The motivation was to produce a host polymer with a high dielectric constant which should reduce ion clustering with an attendant increased conductivity. The new polymer host, poly(diethylene glycol carbonate) and its sodium triflate complexes were characterized by thermal analysis and AC impedance measurements. The polycarbonate backbone appears less flexible than the polyether hosts as evidenced by the higher glass transition temperatures. The conductivity for the sodium triflate complexes was measured as ~ 10−5 S cm−1 at 55 °C and the dielectric constant of the host polymer was found to be 3.6 at 3 GHz. The low conductivity is attributed to rigidity of the polycarbonate.