41 resultados para upper bound

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rig was constructed to carry out compression of an aluminum cylinder with a monotonically rotating platen. The tests carried out showed that the compression load decreased and the side wall bulge severity reduced when the die was rotated. Not all the work supplied by the rotating dies was transferred to the work-piece; circumferential slippage was frequently observed at the die/material interface. This slippage was quantified by comparing measurements made during interrupted testing with the angular velocity of the die. A compound velocity field based on an exponential cusp description of the barreling was employed in an upper bound analysis. An approximate analytical solution was obtained for the degree of barreling and the compression pressure. The model is able to reproduce the decrease in barreling and compression loads with increasing die rotation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the existing literature, the existence conditions and design procedures for scalar functional observers are available for the cases where the observers’ order p is either p=1 or p=(v-1), where v is the observability index of the matrix pair (C,A). Therefore, if an observer with an order p=1 does not exist, the other available option is to use a higher order observer with p=(v-1). This paper shows that there exists another option that can be used to design scalar linear functional observers of the order lower than the well-known upper bound (v-1). The paper provides the existence conditions and a design procedure for scalar functional observers of order 0≤ p ≤2, and demonstrates the presented results with a numerical example.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new method of designing scalar functional observers of order less than the well-known upper bound (ν - 1). A condition for the existence of observers of order p where 1 ≤ p ≤ (ν - 1) is given. A simple and effective algorithm for solving the constrained generalized Sylvester equation is proposed. Several numerical examples are given to illustrate the attractiveness of the design algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the existing literature, the existence conditions and design procedures for scalar functional observers are available for the cases where the observers’ order p is either p=1 or p=(v-1), where v is the observability index of the matrix pair (C,A). Therefore, if an observer with an order p=1 does not exist, the other option is to use a high-order observer with p=(v-1). This paper provides the existence conditions and a design procedure for scalar functional observers of order 0≤p≤2, and demonstrates the presented results with a numerical example. where K, M, E, H and G are constant matrices to be designed. The problem of observing a scalar functional or multi functionals (z(t)∈Rk , k>1) of the state vector has been the subject of numerous papers, and different algorithms have been proposed (see, [1]-[13] and references therein). There are also papers that deal with the order reduction of multi-dimensional functional observers [9,10,12,13]. For scalar functional observers, a well-known Luenberger’s classic result [1] provides an upper bound on the order with p=(v-1). It is interesting to note here that, except for a recent result of Darouach [12,13], little results have been reported on the order reduction for scalar functional observers.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of experiments involving the compression of an Aluminum cylinder with concurrent die rotation were carried out. Two important features were observed: one was that die rotation reduced the degree of bulging and the other was that the compression load decreased. An upper bound analysis with a velocity field consisting of a compound exponential cusp representation was utilized to obtain an approximate analytical solution in a closed form. The theoretical result reproduced the reduction in bulging severity with die rotation as well as the changes in compression pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differential space-time modulation (DSTM) techniques developed for multi-antenna systems allow the receiver to detect the transmitted signal without the knowledge of the fading channels. It can be viewed as an extension of differential phase-shift keying (DPSK) in single antenna systems. In this paper, we derived the pairwise error probability upper bound of differential space-time coded systems with spatially correlated Rayleigh fading channels. Based on the performance analysis, we develop a novel DSTM scheme which can exploit the spatial correlation in the fading channels. It is found that by carefully designing the initial transmitted signal matrix, the performance of the differential space-time coded systems can be significantly improved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent successful development of the equal channel angular pressing (ECAP) process in metals provides a feasible solution to produce ultra-fine or nano-grained bulk: materials with tailored material properties. However, ECAP is difficult to scale up commercially due to excessive load requirements. In this paper, a new Multi-ECAP process with die rotation is considered to obtain ultra-fine grain structured materials under a moderate deformation force. It is shown that an addition of torsion results in a reduction in the pressing force and an increase in severity of plastic deformation. An analysis using the upper bound method is found to be useful in predicting the pressing load and flow pattern of ECAP with and without rotational dies. Solutions are obtained for different inclined channel angles under different angular velocities of dies. Relative pressures are presented and some computed solutions are compared with those found by FEM simulation. The theoretical predictions of the pressing load are in good agreement with the simulation results. The amount of plastic deformation is determined by the inclined angle between the two intersecting channels, and the velocity ratio between the angular velocity of dies and the normal component of the punch velocity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A torsional upset forging process is analysed on the basis of plasticity theory for powder metal forging. Torsional upset forging is a process to be performed by rotating a lower die with a punch travelling along the longitudinal direction of a work-piece. In this study, an upper bound analysis considering bulging effect, finite element method simulation (DEFORM3D), and experimental research have been performed for the process. A simple kinematically admissible velocity field for a three dimensional deformation is presented for the torsional upset forging of a cylindrical billet. Distributions of stress, strain, and forging load in the process have been obtained, and compared with those in conventional upset forging. In the process, an increase in a friction factor and rotation speed results in a decrease in magnitude of upset force, dead metal zone, and non-homogeneous deformation. This process can reduce forming load, which leads to improvement of die life, and also reduce bulging effect. In addition, the initial sintered-structure and density distribution is improved by the process and surface defect due to high deformation is decreased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of Kalman filtering is very common in state estimation problems. The problem with Kalman filters is that they require full prior knowledge about the system modeling. It is also assumed that all the observations are fully received. In real applications, the previous assumptions are not true all the time. It is hard to obtain the exact system model and the observations may be lost due to communication problems. In this paper, we consider the design of a robust Kalman filter for systems subject to uncertainties in the state and white noise covariances. The systems under consideration suffer from random interruptions in the measurements process. An upper bound for the estimation error covariance is proposed. The proposed upper bound is further minimized by selection of optimal filter parameters. Simulation example shows the effectiveness of the proposed filter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Texture synthesis employs neighbourhood matching to generate appropriate new content. Terrain synthesis has the added constraint that new content must be geographically plausible. The profile recognition and polygon breaking algorithm (PPA) [Chang et al. 1998] provides a robust mechanism for characterizing terrain as systems of valley and ridge lines in digital elevation maps. We exploit this to create a terrain characterization metric that is robust, efficient to compute and is sensitive to terrain properties.

Terrain regions are characterized as a minimum spanning tree derived from a graph created from the sample points of the elevation map which are encoded as weights in the edges of the graph. This formulation allows us to provide a single consistent feature definition that is sensitive to the pattern of ridges and valleys in the terrain Alternative formulations of these weights provide richer characteristicmeasures and we provide examples of alternate definitions based on curvature and contour measures.

We show that the measure is robust, with a significant portion derived directly from information local to the terrain sample. Global terrain characteristics introduce the issue of over- and underconnected valley/ridge lines when working with sub-regions. This is addressed by providing two graph construction strategies, which respectively provide an upper bound on connectivity as a single spanning tree, and a lower bound as a forest of trees.

Efficient minimum spanning tree algorithms are adapted to the context of terrain data and are shown to provide substantially better performance than previous PPA implementations. In particular, these are able to characterize valley and ridge behaviour at every point even in large elevation maps, providing a measure sensitive to terrain features at all scales.

The resulting graph based formulation provides an efficient and elegant algorithm for characterizing terrain features. The measure can be calculated efficiently, is robust under changes of neighbourhood position, size and resolution and the hybrid measure is sensitive to terrain features both locally and globally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fault-tolerant motion of redundant manipulators can be obtained by joint velocity reconfiguration. For fault-tolerant manipulators, it is beneficial to determine the configurations that can tolerate the locked-joint failures with a minimum relative joint velocity jump, because the manipulator can rapidly reconfigure itself to tolerate the fault. This paper uses the properties of the condition numbers to introduce those optimal configurations for serial manipulators. The relationship between the manipulator's locked-joint failures and the condition number of the Jacobian matrix is indicated by using a matrix perturbation methodology. Then, it is observed that the condition number provides an upper bound of the required relative joint velocity change for recovering the faults which leads to define the optimal fault-tolerant configuration from the minimization of the condition number. The optimization problem to obtain the minimum condition number is converted to three standard Eigen value optimization problems. A solution is for selected optimization problem is presented. Finally, in order to obtain the optimal fault-tolerant configuration, the proposed method is applied to a 4-DoF planar manipulator.