7 resultados para unit disk graphs

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we demonstrated that a thin aluminium disk can be used as nozzle to electrospin PVA nanofibres on a large-scale. A schematic of this electrospinning system and a SEM image of as-spun PVA nanofibers are shown in Figure 1. The lower part of the disk is inside a bath containing the polymer solution, which is connected to a high voltage powder supply. During electrospinning, the disk rotates and picks up a thin layer of electrically charged PVA solution. A large number of fibres are then electrospun simultaneously from two sides of tile disk and deposited on the electrode collector.
With the small prototype unit we used, the fibre production rate can be as high as 6.0 which is about 270 times higher than that of a corresponding normal needle electrospinning system (0.022g/hr). The effects of appliedb voltage, the distance between the disk nozzle and collector, and PVA concentration on the fibre morphology were examined. The dependency of fibre diameter on the PVA concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the diameter distribution was wider for the disk electrospun fibres in this study.
The profiles of electric field strength in disk electrospinning showed considerable dependence on the disk thickness, with a thin disk exhibiting similar electric field profile to
that of a needle electrospinning system, but a thick disk (cylinder) exhibiting levelled electric field between the disk and the collector. PVA nanofibres electrospun from disk electrospinning were compared to that electrospun from syringe needle and metal cylinder nozzles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to quantify the strength of motor-unit coherence from the first dorsal interosseus muscle in young and old adults using data obtained in a previous study, where no differences in motor-unit synchronization between the two groups were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the study was to quantify the strength of motor-unit coherence from the left and right first dorsal interosseous muscles in untrained, skill-trained (musicians), and strength-trained (weightlifters) individuals who had long-term specialized use of their hand muscles. The strength of motor-unit coherence was quantified from a total of 394 motor-unit pairs in 13 subjects using data from a previous study in which differences were found in the strength of motor-unit synchronization depending on training status. In the present study, we found that the strength of motor-unit coherence was significantly greater in the left compared with the right hand of untrained right-handed subjects with the largest differences observed between 21 and 24 Hz. The strength of motor-unit coherence was lower in both hands of skill-trained subjects (21–27 Hz) and the right (skilled) hand of untrained subjects (21–24 Hz), whereas the largest motor-unit coherence was observed in both hands of strength-trained subjects (3–9 and 21–27 Hz). A strong curvilinear association was observed between motor-unit synchronization and the integral of coherence at 10–30 Hz in all motor-unit pairs (r2 = 0.77), and was most pronounced in strength-trained subjects (r2 = 0.90). Furthermore, this association was accentuated when using synchronization data with broad peaks (>11 ms), suggesting that the 10- to 30-Hz coherence is due to oscillatory activity in indirect branched common inputs. The altered coherence with training may be due to an interaction between cortical inhibition and the number of direct common inputs to motor neurons in skill- or strength-trained hands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building integrated photovoltaic (BiPV) systems generate electricity, but also heat, which is typically wasted and also reduces the efficiency of generation. A heat recovery unit can be combined with a BiPV system to take advantage of this waste heat, thus providing cogeneration. Two different photovoltaic (PV) cell types were combined with a heat recovery unit and analysed in terms of their life-cycle energy consumption to determine the energy payback period. A net energy analysis of these PV systems has previously been performed, but recent improvements in the data used for this study allow for a more comprehensive assessment of the combined energy used throughout the entire life-cycle of these systems to be performed. Energy payback periods between 4 and 16.5 years were found, depending on the BiPV system. The energy embodied in PV systems is significant, emphasised here due to the innovative use of national average input–output (I–O) data to fill gaps in traditional life-cycle inventories, i.e. hybrid analysis. These findings provide an insight into the net energy savings that are possible with a well-designed and managed BiPV system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the study was to quantify the strength of motor unit synchronization and coherence from pairs of concurrently active motor units before and after short-term (4–8 weeks) strength training of the left first dorsal interosseous (FDI) muscle. Five subjects (age 24.8 ± 4.3 years) performed a training protocol three times/week that consisted of six sets of ten maximal isometric index finger abductions, whereas three subjects (age 27.3 ± 6.7 years) acted as controls. Motor unit activity was recorded from pairs of intramuscular electrodes in the FDI muscle with two separate motor unit recording sessions obtained before and after strength training (trained group) or after 4 weeks of normal daily activities that did not involve training (control group). The training intervention resulted in a 54% (45.2 ± 8.3 to 69.5 ± 13.8 N, P = 0.001) increase in maximal index finger abduction force, whereas there was no change in strength in the control group. A total of 163 motor unit pairs (198 single motor units) were examined in both subject groups, with 52 motor unit pairs obtained from 10 recording sessions before training and 51 motor unit pairs from 10 recording sessions after training. Using the cross-correlation procedure, there was no change in the strength of motor unit synchronization following strength training (common input strength index; 0.71 ± 0.41 to 0.67 ± 0.43 pulses/s). Furthermore, motor unit coherence z scores at low (0–10 Hz; 3.9 ± 0.3 before to 4.4 ± 0.4 after) or high (10–30 Hz; 1.7 ± 0.1 before to 1.9 ± 0.1 after) frequencies were not influenced by strength training. These motor unit data indicate that increases in strength following several weeks of training a hand muscle are not accompanied by changes in motor unit synchronization or coherence, suggesting that these features of correlated motor unit activity are not important in the expression of muscle strength.