64 resultados para uncoupling protein 1 (UCP1)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration. These cells can be expanded in culture, and their UCP1 mRNA expression is strongly increased by cell-permeating cAMP derivatives and a peroxisome-proliferator-activated receptor-{gamma} (PPAR{gamma}) agonist. Furthermore, UCP1 mRNA was detected in the skeletal muscle of adult humans, and its expression was increased in vivo by PPAR{gamma} agonist treatment. All the studies concerning UCP1 expression in adult humans have until now been focused on the white adipose tissue. Here we show for the first time the existence in human skeletal muscle and the prospective isolation of progenitor cells with a high potential for UCP1 expression. The discovery of this reservoir generates a new hope of treating obesity by acting on energy dissipation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Riboflavin-responsive, multiple acylcoenzyme A dehydrogenase deficiency (RR-MAD), a lipid storage myopathy, is characterized by, among others, a decrease in fatty acid (FA) ß-oxidation capacity. Muscle uncoupling protein 3 (UCP3) is up-regulated under conditions that either increase the levels of circulating free FA and/or decrease FA ß-oxidation. Using a relatively large cohort of seven RR-MAD patients, we aimed to better characterize the metabolic disturbances of this disease and to explore the possibility that it might increase UCP3 expression. A battery of biochemical and molecular tests were performed, which demonstrated decreases in FA ß-oxidation and in the activities of respiratory chain complexes I and II. These metabolic alterations were associated with increases of 3.1- and 1.7-fold in UCP3 mRNA and protein expression, respectively. All parameters were restored to control values after riboflavin treatment. We postulate that the up-regulation of UCP3 in RR-MAD is due to the accumulation of muscle FA/acylCoA. RR-MAD is an optimal model to support the hypothesis that UCP3 is involved in the outward translocation of an excess of FA from the mitochondria and to show that, in humans, the effects of FA on UCP3 expression are direct and independent of fatty acid ß-oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncoupling protein-3 (UCP3) is a mitochondrial inner-membrane protein abundantly expressed in rodent and human skeletal muscle which may be involved in energy dissipation. Many studies have been performed on the metabolic regulation of UCP3 mRNA level, but little is known about UCP3 expression at the protein level. Two populations of mitochondria have been described in skeletal muscle, subsarcolemmal (SS) and intermyofibrillar (IMF), which differ in their intracellular localization and possibly also their metabolic role. To examine if UCP3 is differentially expressed in these two populations and in different mouse muscle types, we developed a new protocol for isolation of SS and IMF mitochondria and carefully validated a new UCP3 antibody. The data show that the density of UCP3 is higher in the mitochondria of glycolytic muscles (tibialis anterior and gastrocnemius) than in those of oxidative muscle (soleus). They also show that SS mitochondria contain more UCP3 per mg of protein than IMF mitochondria. Taken together, these results suggest that oxidative muscle and the mitochondria most closely associated with myofibrils are most efficient at producing ATP. We then determined the effect of a 24-h fast, which greatly increases UCP3 mRNA (16.4-fold) in muscle, on UCP3 protein expression in gastrocnemius mitochondria. We found that fasting moderately increases (1.5-fold) or does not change UCP3 protein in gastrocnemius SS or IMF mitochondria, respectively. These results show that modulation of UCP3 expression at the mRNA level does not necessarily result in similar changes at the protein level and indicate that UCP3 density in SS and IMF mitochondria can be differently affected by metabolic changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes.
Objective: We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3.
Patients, Design, Intervention: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 ± 3.1 yr; body mass index (BMI), 29.8 ± 2.9 kg/m2], nine IGT subjects (age, 59.0 ± 6.6 yr; BMI, 29.7 ± 3.0 kg/m2), and 10 age- and BMI-matched healthy controls (age, 57.3 ± 7.4 yr; BMI, 30.1 ± 3.9 kg/m2) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk.
Main Outcome Measures: Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I–V) content.
Results: UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 ± 28.5, 47.2 ± 24.7, and 72.0 ± 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I–V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 ± 29.9 to 66.3 ± 30.9 arbitrary units; P < 0.05).
Conclusion: We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catecholamines are viewed as major stimulants of diet- and cold-induced thermogenesis and of fasting-induced lipolysis, through the β-adrenoceptors (β1/β2/β3). To test this hypothesis, we generated β1/β2/β3-adrenoceptor triple knockout (TKO) mice and compared them to wild type animals. TKO mice exhibited normophagic obesity and cold-intolerance. Their brown fat had impaired morphology and lacked responses to cold of uncoupling protein-1 expression. In contrast, TKO mice had higher circulating levels of free fatty acids and glycerol at basal and fasted states, suggesting enhanced lipolysis. Hence, β-adrenergic signalling is essential for the resistance to obesity and cold, but not for the lipolytic response to fasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibodies against the 19 kDa C‐terminal fragment of merozoite surface protein 1 (MSP119) are a major component of the invasion‐inhibitory response in individuals immune to malaria. We report here the acquisition of MSP119‐specific invasion‐inhibitory antibodies in a group of transmigrants who experienced their sequential malaria infections during settlement in an area of Indonesia where malaria is highly endemic. We used 2 transgenic Plasmodium falciparum parasite lines that expressed either endogenous MSP119 or the homologous region from P. chabaudi to measure the MSP119‐specific invasion‐inhibitory antibodies. The results revealed that the acquisition of MSP119‐specific invasion‐inhibitory antibodies required 2 or more P. falciparum infections. In contrast, enzyme‐linked immunosorbent assays on the same serum samples showed that MSP119‐specific antibodies are present after the first malaria infection. This delay in the acquisition of functional antibodies by residents of areas where malaria is endemic is consistent with the observation that multiple malaria infections are required before clinical immunity is acquired.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. Recently, the mouse P-gp/Abcb1a structure has been determined and this has significantly enhanced our understanding of the structure-activity relationship (SAR) of mammalian ABC transporters. This paper highlights our current knowledge on the structural and functional properties and the SAR of human MRP1/ABCC1. Although the crystal structure of MRP1/ABCC1 has yet to be resolved, the current topological model of MRP1/ABCC1 contains two transmembrane domains (TMD1 and TMD2) each followed by a nucleotide binding domain (NBD) plus a third NH2-terminal TMD0. MRP1/ABCC1 is expressed in the liver, kidney, intestine, brain and other tissues. MRP1/ABCC1 transports a structurally diverse array of important endogenous substances (e.g. leukotrienes and estrogen conjugates) and xenobiotics and their metabolites, including various conjugates, anticancer drugs, heavy metals, organic anions and lipids. Cells that highly express MRP1/ABCC1 confer resistance to a variety of natural product anticancer drugs such as vinca alkaloids (e.g. vincristine), anthracyclines (e.g. etoposide) and epipodophyllotoxins (e.g. doxorubicin and mitoxantrone). MRP1/ABCC1 is associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. However, most compounds that efficiently reverse P-gp/ABCB1-mediated multidrug resistance have only low affinity for MRP1/ABCC1 and there are only a few effective and relatively specific MRP1/ABCC1 inhibitors available. A number of site-directed mutagenesis studies, biophysical and photolabeling studies, SAR and QSAR, molecular docking and homology modeling studies have documented the role of multiple residues in determining the substrate specificity and inhibitor selectivity of MRP1/ABCC1. Most of these residues are located in the TMs of TMD1 and TMD2, in particular TMs 4, 6, 7, 8, 10, 11, 14, 16, and 17, or in close proximity to the membrane/cytosol interface of MRP1/ABCC1. The exact transporting mechanism of MRP1/ABCC1 is unclear. MRP1/ABCC1 and other multidrug transporters are front-line mediators of drug resistance in cancers and represent important therapeutic targets in future chemotherapy. The crystal structure of human MRP1/ABCC1 is expected to be resolved in the near future and this will provide an insight into the SAR of MRP1/ABCC1 and allow for rational design of anticancer drugs and potent and selective MRP1/ABCC1 inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:

The SH3-domain GRB2-like (endophilin)-interacting protein 1 (SGIP1) gene has been shown to be differentially expressed in the hypothalamus of lean versus obese Israeli sand rats (Psammomys obesus), and is suspected of having a role in regulating food intake. The purpose of this study was to assess the role of genetic variation in SGIP1 in human disease.
Subjects:

We performed single-nucleotide polymorphism (SNP) genotyping in a large family pedigree cohort from the island of Mauritius. The Mauritius Family Study (MFS) consists of 400 individuals from 24 Indo-Mauritian families recruited from the genetically homogeneous population of Mauritius. We measured markers of the metabolic syndrome, including diabetes and obesity-related phenotypes such as fasting plasma glucose, waist:hip ratio, body mass index and fat mass.
Results:

Statistical genetic analysis revealed associations between SGIP1 polymorphisms and fat mass (in kilograms) as measured by bioimpedance. SNP genotyping identified associations between several genetic variants and fat mass, with the strongest association for rs2146905 (P=4.7 × 10−5). A strong allelic effect was noted for several SNPs where fat mass was reduced by up to 9.4% for individuals homozygous for the minor allele.
Conclusions:

Our results show association between genetic variants in SGIP1 and fat mass. We provide evidence that variation in SGIP1 is a potentially important determinant of obesity-related traits in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-α2 (~2.5-fold) and transcription of the uncoupling protein-3 (UCP3, ~4-fold) and hexokinase II (HKII, ~10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 µg · g-1 · min-1 for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.