7 resultados para twin boundary motion

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direction and speed of motion of a one-dimensional (1-D) stimulus, such as a grating, presented within a circular aperture is ambiguous. This ambiguity, referred to as the Aperture Problem (Fennema & Thompson, 1979) results from (i) the inability to detect motion parallel to grating orientation, and (ii) the occlusion of border information, such as the ‘ends’ of the grating, by the surface forming the aperture, Adelson and Movshon's (1982) intcrsection-of-constraints (IOC) model of motion perception describes a two-stage method of disambiguating the motion of 1-D moving stimuli (e.g., gratings) to produce unambiguous motion of two-dimensional (2-D) objects (e.g., plaid patterns) made up of several 1-D components. Specifically, in the IOC model ambiguous 1-D motions extracted by Stage 1 component-selective mechanisms are integrated by Stage 2 pattern-selective mechanisms to produce unambiguous 2-D motion signals. ‘Integration’ in the context of the IOC model involves determining the single motion vector (i.e., combination of direction and speed) which is consistent with the I-D components of a 2-D object. Since the IOC model assumes that 2-D objects undergo pure translation (i.e., without distortion, rotation, etc.), the motion vector consistent with all 1-D components describes the motion of the 2-D object itself. Adelson and Movshon (1982) propose that neural implementation of the computation underlying the IOC model is reflected in the perception of coherent 2-D plaid motion reported when two separately-moving ‘component’ gratings are superimposed. Using these plaid patterns the present thesis assesses the IOC model in terms of its ability to account for the perception of 2-D motion in a variety of circumstances. In the first series of experiments it is argued that the unambiguous motion perceived for a single grating presented within a rectangular aperture (i.e., the Barberpole illusion; Wallach, 1976) reflects application of the IOC computation to the moving 1-D grating and the stationary boundary of the aperture. While contrary to the assumption which underlies the IOC model (viz., that integration occurs between moving 1-D stimuli), evidence consistent with the involvement of the IOC computation in mediating the Barberpole illusion (in which there is only one moving stimulus) is obtained by measuring plaid coherence as a function of aperture shape. It is found that rectangular apertures which bias perceived component motions in directions consistent with plaid direction facilitate plaid coherence, while rectangular apertures which bias perceived component motions in directions inconsistent with plaid direction disrupt plaid coherence. In the second series of experiments, perceived directions of motion of type I symmetrical, type I asymmetrical, and type II plaids are measured with the aim of investigating the deviations in plaid directions reported by Ferrera and Wilson (1990) and Yo and Wilson (1992). Perceived directions of both asymmetrical and type II plaids are shown to deviate away from lOC-predicted directions and towards mean component direction. Furthermore, the magnitude of these deviations is being proportional to the difference between lOC-predicted plaid direction and mean component direction. On the basis of these directional deviations, modification to the IOC model is proposed. In the modified IOC model it is argued that plaid perception involves (i) the activity of Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these pattern-selective mechanisms) involved in implementing the IOC computation, and (ii) component-selective mechanisms which influence plaid perception directly, and ‘extraneously’ to the IOC computation. In the third series of experiments the validity of this modified IOC model, as well as the validity of alternative one-stage models of plaid perception are assessed in relation to perceived directions of plaid-induced MAEs as a function of both plaid direction and mean component direction. It is found that plaid-induced MAEs are shifted away from directions opposite to lOC-predicted plaid direction towards the direction opposite to mean component direction. This pattern of results is taken to be consistent with the modified IOC model which predicts the activity, and adaptation both of mechanisms signalling plaid direction (via implementation of the IOC computation), and ‘extraneous-type’ component-selective mechanisms signalling component directions. Alternative one-stage models which predict the adaptation of only mechanisms signalling plaid direction (the feature-tracking model), or the adaptation only of mechanisms signalling component directions (the distribution-of-activity model), cannot account for the directions of plaid-induced MAEs reported. The ability of the modified IOC model to account for the perceived directions of (i) gratings in rectangular apertures, (ii) various types of plaid in circular apertures, and (iii) directions of plaid-induced MAEs, is interpreted as supporting the proposition that human motion perception is based on a parallel and distributed process involving Stage 2 pattern-selective mechanisms (and the Stage 1 component-selective mechanisms which input into these mechanisms) taken to implement the IOC computation, and component-selective mechanisms taken to provide an 'extraneous' direct contribution to motion perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work constitutes the first attempt to extract the important narrative structure, the 3-Act storytelling paradigm in film. Widely prevalent in the domain of film, it forms the foundation and framework in which a film can be made to function as an effective tool for story telling, and its extraction is a vital step in automatic content management for film data. The identification of act boundaries allows for structuralizing film at a level far higher than existing segmentation frameworks, which include shot detection and scene identification, and provides a basis for inferences about the semantic content of dramatic events in film. A novel act boundary likelihood function for Act 1 and 2 is derived using a Bayesian formulation under guidance from film grammar, tested under many configurations and the results are reported for experiments involving 25 full-length movies. The result proves to be a useful tool in both the automatic and semi-interactive setting for semantic analysis of film, with potential application to analogues occuring in many other domains, including news, training video, sitcoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work constitutes the first attempt to extract an important narrative structure, the 3-Act story telling paradigm, in film. This narrative structure is prevalent in the domain of film as it forms the foundation and framework in which the film can be made to function as an effective tool for story telling, and its extraction is a vital step in automatic content management for film data. A novel act boundary likelihood function for Act 1 is derived using a Bayesian formulation under guidance from film grammar, tested under many configurations and the results are reported for experiments involving 25 full length movies. The formulation is shown to be a useful tool in both the automatic and semi-interactive setting for semantic analysis of film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in grain size, texture and misorientation distributions have been monitored during extensive normal grain growth in 3%Si steels. The boundary misorientation distributions deviate significantly from the Mackenzie relationship. Comparisons of correlated and uncorrelated distributions show large excesses of low angle boundaries. However, these are not a result of low energy boundaries being favoured during grain growth since the deviation diminishes as growth proceeds. The effect originates in the nucleation of grains in colonies of similar orientation during primary recrystallisation. A slight tendency for promotion of 60º boundaries may indicate some preference for the retention of lower energy twin boundaries during grain growth in silicon steel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the characterization of grain boundary (GB) segregation in an Fe-28Mn-0.3C (wt.%) twinning-induced plasticity (TWIP) steel. After recrystallization of this steel for 24 h at 700 °C, ∼50% general grain boundaries (GBs) and ∼35% Σ3 annealing twin boundaries were observed (others were high-order Σ and low-angle GBs). The segregation of B, C and P and traces of Si and Cu were detected at the general GB by atom probe tomography (APT) and quantified using ladder diagrams. In the case of the Σ3 coherent annealing twin, it was necessary to first locate the position of the boundary by density analysis of the atom probe data, then small amounts of B, Si and P segregation and, surprisingly, depletion of C were detected. The concentration of Mn was constant across the interface for both boundary types. The depletion of C at the annealing twin is explained by a local change in the stacking sequence at the boundary, creating a local hexagonal close-packed structure with low C solubility. This finding raises the question of whether segregation/depletion also occurs at Σ3 deformation twin boundaries in high-Mn TWIP steels. Consequently, a previously published APT dataset of the Fe-22Mn-0.6C alloy system, containing a high density of deformation twins due to 30% tensile deformation at room temperature, was reinvestigated using the same analysis routine as for the annealing twin. Although crystallographically identical to the annealing twin, no evidence of segregation or depletion was found at the deformation twins, owing to the lack of mobility of solutes during twin formation at room temperature.