3 resultados para tunable magnetic-electric

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS2) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS2 nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostatic interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS2 nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS2 nanosheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents systematic studies on aligning carbon nanofillers in epoxy by external fields, either electric fields or magnetic fields, to create nanocomposites with greatly improved mechanical and electrical properties. Carbon nanofibers (CNFs) and graphene nanoplatelets (GnPs) were observed to align along the field direction in the epoxy resin. Compared to the unmodifed epoxy and those with randomly-oriented carbon nanofillers, the nanocomposites with aligned carbon nanofillers showed significantly higher fracture toughness and electrical conductivity along the direction of the external field. Compared with randomly-oriented nanofillers, aligned GnPs and CNFs produced 40% and 27% improvement in fracture energy at 1.0 wt%, bringing the total increase in fracture energy over the neat polymer to more than 10 times. Several key toughening mechanisms were identified through fractographic analysis, which was used to develop predictive models to quantify the increases in the value of GIc as a result of 1-D and 2D carbon nanofillers. The present findings suggest that aligning carbon nanofillers presents a very promising technique to create multi-scale reinforcement with greatly increased electric conductivity and fracture toughness.