7 resultados para truss

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element study based on 1D beam element model is performed in order to investigate the mechanical behavior of an elasto-plastic beam loaded in axial compression over its buckling limit. The mode of loading is related to the damage of truss-cored beams in truss-cored laminates. The analysis takes into account the effects of geometry and material properties. The results of the FEM analysis are used for developing a simple mechanical model based on the basic Euler-Bernoulli beam theory and accounts for the beam compressibility. The model uses phenomenological functions containing parameters related to the basic material and geometrical properties. The presented model is developed in the form of closed solution which does not require complex numerical methods or extensive parametric studies. Predictions of the compressive stiffness degradation of truss-cored composites are made with the proposed model and compared with the results of FEM simulations. The error of the stiffness prediction with respect to the FEM results is within 10% over a 5 fold range of stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Truss core laminates display stiffness and strength/density ratios superior to those seen in foam cored laminates. However, this superiority is held only for ideal shaped struts. If the truss core is damaged, its performance rapidly decreases towards that of a foam. The present study investigates the stiffness and strength degradation with imposed core deformation/damage. This is done for a pyramidal core structure made by electro-discharge machining from AA5083 alloy. The experiments are compared with finite element predictions. The effect of the strain rate sensitivity is studied by performing the tests at different temperatures and by FE simulations with different material data sets. The results show reasonable agreement between experiments and modeling. The stiffness of a damaged truss core rapidly degrades and reaches the performance levels seen in foams after ≈8% of deformation. The results show that a high strain rate sensitivity significantly influences post-buckling core behavior and is able to decrease the stiffness and strength degradation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The truss bolt reinforcement system has been used in controlling the stability of underground excavations in severe ground conditions and cutter roof failure in layered rocks especially in coal mines. In spite of good application reports, working mechanism of this system is largely unknown and truss bolts are predominantly designed based on past experience and engineering judgement. In this study, the reinforcing effect of the truss bolt system on an underground excavation in layered rock is studied using non-linear finite element analysis. Different indicators are defined to evaluate the reinforcing effects of the truss bolt system. Using these indicators one can evaluate the effects of a reinforcing system on the deformation, loosened area, failure prevention, horizontal movement of the immediate layer, shear crack propagation and cutter roof failure of underground excavations. Effects of truss bolt on these indicators reveal the working mechanism of the truss bolt system. To illustrate the application of these indicators, a comparative study is conducted between three different truss bolt designs. It is shown that the design parameters of truss bolt systems, including tie-rod span, length, and angle of the bolts can have significant effects on the reinforcing capability of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction industry consumes a great deal of natural resources and energy in constructing, maintaining and demolishing their products such as buildings and bridges. These activities lead significant impacts on global and regional environments in addition to their economic expenses. In this research, the lifecycle cost (LCC) and lifecycle CO2 (LCCO2) emission of newly developed bridges, including the minimized girder, rationalized box-girder and rationalized truss bridges, are quantified and compared with those of the conventional I-girder, box-girder and truss bridges. It was found that the newly developed types of bridges have lower values in both LCC and LCCO2 than the corresponding conventional bridges do. The effects of span lengths on LCC and LCCO2 are studied for both conventional and rationalized bridges. The characteristics of LCC and LCCO2 are investigated over the lifecycle of a bridge including its construction, maintenance and replacement stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on studying aluminum micro-truss sandwich structures. These structures have useful properties for a wide range of applications, such as aircraft manufacturing. This thesis suggests the application of a new approach that is using elevated temperature to reduce the undesirable defections in these truss structures during forming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finding an optimum reinforcement layout for underground excavation can result in a safer and more economical design, and is therefore highly desirable. Some works in the literature have applied topology optimization in tunnel reinforcement design in which reinforced rock is modeled as homogenized isotropic material. Optimization results, therefore, do not clearly show reinforcement distributions, leading to difficulties in explaining the final outcomes. To overcome this deficiency, a more sophisticated modeling technique in which reinforcements are explicitly modeled as truss elements embedded in rock mass media is used. An optimization algorithm extending the solid isotropic material with penalization method is introduced to seek for an optimal bolt layout. To obtain the stiffest structure with a given amount of reinforced material, external work along the opening is selected as the objective function with a constraint on the volume of reinforcement. The presented technique does not depend on material models used for rock and reinforcements and can be applied to any material model. Nonlinear material behavior of rock and reinforcement is considered in this work. Through solving some typical examples, the proposed approach is proved to enhance the conventional reinforcement design and provide clear and practical reinforcement layouts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new finite modelling approach is presented to analyse the mode I delamination fracture toughness of z-pinned laminates using the computationally efficient embedded element technique. In the FE model,each z-pin is represented by a single one-dimensional truss element that is embedded within the laminate. Each truss is given the material, geometric and spatial properties associated with the global crackbridging traction response of a z-pin in the laminate; this simplification provides a computationally efficient and flexible model where pin elements are independent of the underlying structural mesh for thelaminate. The accuracy of the FE modelling approach is assessed using mode I interlaminar fracture toughness data for a carbon-epoxy laminate reinforced with z-pins made of copper, titanium or stainless steel. The model is able to predict with good accuracy the crack growth resistance curves and fracture toughness properties for the different types of z-pinned laminate.