66 resultados para traffic and transport

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Gender differences in cycling are well-documented. However, most analyses of gender differences make broad comparisons, with few studies modeling male and female cycling patterns separately for recreational and transport cycling. This modeling is important, in order to improve our efforts to promote cycling to women and men in countries like Australia with low rates of transport cycling. The main aim of this study was to examine gender differences in cycling patterns and in motivators and constraints to cycling, separately for recreational and transport cycling.

Methods
Adult members of a Queensland, Australia, community bicycling organization completed an online survey about their cycling patterns; cycling purposes; and personal, social and perceived environmental motivators and constraints (47% response rate). Closed and open-end questions were completed. Using the quantitative data, multivariable linear, logistic and ordinal regression models were used to examine associations between gender and cycling patterns, motivators and constraints. The qualitative data were thematically analyzed to expand upon the quantitative findings.

Results
In this sample of 1862 bicyclists, men were more likely than women to cycle for recreation and for transport, and they cycled for longer. Most transport cycling was for commuting, with men more likely than women to commute by bicycle. Men were more likely to cycle on-road, and women off-road. However, most men and women did not prefer to cycle on-road without designed bicycle lanes, and qualitative data indicated a strong preference by men and women for bicycle-only off-road paths. Both genders reported personal factors (health and enjoyment related) as motivators for cycling, although women were more likely to agree that other personal, social and environmental factors were also motivating. The main constraints for both genders and both cycling purposes were perceived environmental factors related to traffic conditions, motorist aggression and safety. Women, however, reported more constraints, and were more likely to report as constraints other environmental factors and personal factors.

Conclusion
Differences found in men’s and women’s cycling patterns, motivators and constraints should be considered in efforts to promote cycling, particularly in efforts to increase cycling for transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:



A modified version of the popular agrohydrological model SWAP has been used to evaluate modelling of soil water flow and crop growth at field situations in which water repellency causes preferential flow. The parameter sensitivity in such situations has been studied. Three options to model soil water flow within SWAP are described and compared: uniform flow, the classical mobile-immobile concept, and a recent concept accounting for the dynamics of finger development resulting from unstable infiltration. Data collected from a severely water-repellent affected soil located in Australia were used to compare and evaluate the usefulness of the modelling options for the agricultural management of such soils.

The study shows that an assumption of uniform flow in a water-repellent soil profile leads to an underestimation of groundwater recharge and an overestimation of plant transpiration and crop production. The new concept of modelling taking finger dynamics into account provides greater flexibility and can more accurately model the observed effects of preferential flow compared with the classical mobile–immobile concept. The parameter analysis indicates that the most important factor defining the presence and extremity of preferential flow is the critical soil water content.

Comparison of the modelling results with the Australian field data showed that without the use of a preferential flow module, the effects of the clay amendments to the soil were insufficiently reproduced in the dry matter production results. This means that the physical characteristics of the soil alone are not sufficient to explain the measured increase in production on clay amended soils. However, modelling with the module accounting for finger dynamics indicated that the preferential flow in water repellent soils that had not been treated with clay caused water stress for the crops, which would explain the decrease in production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large proportion of non-communicable disease can be attributed to modifiable risk factors such as poor nutrition and physical inactivity. We present data on planning and transport practitioners' perceptions and responses to government public health guidance aimed at modifying environmental factors to promote physical activity. This study was informed by questions on the role of evidence-based guidance, the views of professionals towards the guidance, the links between guidance and existing legislation and policy and the practicality of guidelines. A key informant 'snowball' sampling technique was used to recruit participants from the main professional planning organisations across England. Seventy-six people were interviewed in eight focus groups. We found that evidence-based public health guidance is a new voice in urban and town planning, although much of the advice is already reflected by the 'accepted wisdom' of these professions. Evidence-based health guidance could be a powerful driver affecting planning practice, but other legislated planning guidance may take priority for planning and transport professionals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and transport of N-propyl-N-methylpyrrolidinium tetrafluoroborate (P13BF4) has been investigated over a wide temperature range in consequence to exhibiting properties suitable for potential solid-state superionic electrolyte applications. Prior to melting, the organic salt, P13BF4, transforms into a plastic crystal phase. Intrinsic conductivity in this solid, phase I (45–65 °C), is comparable to that in the melt (~10−3 S cm−1). Ionic motion and transport properties were investigated by 1H and 11B nuclear magnetic resonance (NMR) spectroscopy. Pressure-induced plastic flow in this system may accommodate volume changes in device application and to this extent, X-ray diffraction (XRD) has been used. Scanning electron microscopy (SEM) revealed complex surface morphology and lattice imperfections associated with the strong orientational disorder of the plastic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copolymerization of lithium 2-acrylamido-2-methyl-1-propane sulfonate (LiAMPS) with N,N ′-dimethylacrylamide has yielded polyelectrolyte systems which can be gelled with an ethylene carbonate/N ′,N ′-dimethylacetamide solvent mixture and show high ionic conductivities. 7Li linewidth and relaxation times as well as 1H NMR diffusion coefficients have been used to investigate the effect of copolymer composition as well as copolymer concentration in the gel electrolyte with respect to ionic transport and polyelectrolyte structure. It appears that ion association is likely even in the case of low lithium salt concentration; however a rapid exchange exists between the associated and non-associated lithium species. Beyond 0.2 M of LiAMPS, both the conductivity and solvent diffusion reach a plateau, whilst lithium ion linewidth and spin-spin relaxation are suggestive, on average, of a less mobile species. The thermal analysis data is also supportive of this association effectively leading to a form of phase separation on the nanoscale, which gives a lower overall activity of lithium ions in the solvent rich regions beyond about 0.2 M of LiAMPS, thereby leading to an increase in the final liquidus temperature of the binary liquid solvent from –9 to +5°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of polymer electrolytes, especially those based on polyether–lithium salt systems. In some cases, conductivity increases of more than one order of magnitude have been reported in crystalline PEO-based complexes. In this work, we report on the effects of TiO2 on a completely amorphous polyether-based system to remove the complication of multiple phases presented by the semi-crystalline nature of PEO. Multinuclear magnetic resonance spectroscopy has shown that the lithium ion environment is changed by the addition of filler. Vibrational spectroscopy shows that the filler influences the disordered-longitudinal acoustic modes (DLAM) in the case of an amorphous polyether and suggests an interaction between the filler surface and the polymer. Positron annihilation lifetime spectroscopy indicates an increase in free volume upon addition of filler to an amorphous polyether–salt complex, coinciding with an apparent increase in polymer mobility as determined from 1H T2 NMR measurements. Impedance spectroscopy has shown clear evidence of an inter-phase region that may be more or less conductive than the bulk polymer electrolyte itself. The data support a model which includes conduction through an interfacial region in addition to the bulk polymer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, thermodynamic and transport properties have been calculated in concentrated non-aqueous NaI solutions using molecular dynamics simulations. Although the solvent has been represented by a simplistic Stockmayer fluid (spherical particles with point dipoles), the general trends observed are still a useful indication of the behavior of real non-aqueous electrolyte systems. Results indicate that in low dielectric media, significant ion pairing and clustering occurs. Contact ion pairs become more prominent at higher temperatures, independent of the dielectric strength of the solvent. Thermodynamic analysis shows that this temperature behavior is predominantly entropically driven. Calculation of ionic diffusivities and conductivities in the NaI/ether system confirms the clustered nature of the salt, with the conductivities significantly lower than those predicted from the Nernst-Einstein relation. In systems where the solvent-ion interactions increase relative to ion-ion interactions (lower charge or higher solvent dipole moment), less clustering is observed and the transport properties indicate independent motion of the ions, with higher calculated conductivities. The solvent in this system is the most mobile species, in comparison with the polymer electrolytes where the solvent is practically immobile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations in NaI solutions, where the solvent has been represented by the Stockmayer fluid, were performed as a function of temperature, salt concentration, and solvent dipole strength. At higher temperatures contact ion pairs become more prevalent, regardless of solvent strength. An examination of the temperature dependence of the potential of mean force demonstrates the entropic nature of this effect. The transport properties calculated in the simulations are dependent on the balance between solvent dielectric constant and ion charge. In systems with a large solvent dipole moment, the ions appear to be independently mobile, and deviations from Nernst–Einstein behavior are small. In systems of smaller solvent dipole moment or greater ion charge, the ions form clusters, and large deviations from Nernst–Einstein behavior are observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations implementing both Monte Carlo (MC) and molecular dynamics (MD) techniques were used to explore various aspects of polymer electrolytes. Evidence is presented to support the conclusion that collective behavior of ions determines much of the behavior of these complex materials. Simple theories attributing ion transport to either single ions or clusters of three ions are inadequate to explain ion transport behavior; in particular, the Nernst-Einstein relation commonly used to discuss polymer electrolytes is almost certainly quantitatively inappropriate for these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the aggregation, ageing and transport properties of surface modified silica dispersions in DMSO by photon correlation spectroscopy and conductivity measurements. The surface modification introduces Li+-ions that dissociate in the dispersion creating a single Li+-ion conducting electrolyte. We show that the surface modification changes the aggregation and ageing properties of the material. There is a pronounced ageing observed for the modified silica dispersions. At high concentrations of fumed silica a gel state is found, which in the case of the surface modified silica is a very weak gel that can be rejuvenated by ultrasonic treatment. The key parameter controlling the aggregation in this system is hydrogen bonding and the surface modification results in a very low number of sites for hydrogen bonding. In addition there is a contribution from repulsive electrostatic interactions in the surface modified silica dispersions due to the highly charged surfaces of these particles. Furthermore, the Li+-ion diffusion, at low silica concentration, is three orders of magnitude faster than that of the silica particles and in the gel state the silica particles are immobile. We also find that the Li+-ion diffusion is virtually independent of the silica concentration in the dispersions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P1,2,2,4][PF6]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid–solid phase transitions and a highly “plastic” and conductive final solid phase in which the conductivity reaches 10–3 S cm–1. The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the 1H, 19F, and 31P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P1,2,2,4][PF6]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular ionic networks based on highly delocalized dianions having (trifluoromethane-sulfonyl)imide, (propylsulfonyl)methanide and (cyano-propylsulfonyl)imide groups were developed and their physical properties were examined in detail. Most of the synthesized compounds were semi-crystalline possessing Tm values close to 100°C; however, amorphous networks were also obtained using aromatic asymmetric dianions. Rheological measurements in temperature sweep tests at a constant frequency confirmed two different behaviors: a fast melting close to the Tm for semi-crystalline materials and a thermoreversible network for liquid transition for the amorphous supramolecular ionic networks. It was found that the amorphous ionic networks showed significantly higher ionic conductivity (10-3 S cm-1 at 100°C) than the crystalline ionic networks (10-6 S cm-1) and previously reported amorphous citrate ionic networks (10-5 S cm-1). The supramolecular ionic networks containing hydrophobic (trifluoromethanesulfonyl)imide groups demonstrated improved water stability and higher thermal stability than the previously synthesized carboxylate ones. Noticeably, the obtained amorphous supramolecular ionic networks combine not only high ionic conductivity and thermal stability, but also self-healing properties into the same material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(acrylonitrile) (PAN) in N,N-dimethylformamide (DMF) is a popular solution for producing large variety of polymer products. To precisely describe the behaviours of PAN and DMF in the synthesis processes, it is significant to call for more details about the structure, some thermodynamic and dynamical properties of PAN-DMF solutions. A PAN-DMF solution was simulated via molecular dynamics with an all-atom OPLS type potential in both the NPT and NVT ensembles. The simulation results were evaluated with quantum mechanical calculations (MP2/6-311 ++G(d,p) and counterpoise procedure) and were compared with available experimental results. The liquid structure was illustrated with pair correlation functions and transport and dynamics properties were calculated with the mean-square displacements MSD and the velocity autocorrelation functions. The strong H-bonds of C≡N « H-C=O, CH » O=C-H and CH2 O=C-H, with distances of 2.55 Å, 2.55 Å and 2.65 Å, respectively, were found. The largest interaction energy of - 7.157 kcal/mol between DMF molecules and PAN molecules was found at 4.9 Å center-of-mass distance. A potential profile of intermolecular interaction of DMF with PAN along the interaction distance was presented, clearly showing an increase of DMF vaporisation heat when it getting close to PAN molecules. This provided very useful information to analyse the vaporisation behaviours of DMF at the microscopic level, which is essential to comprehensively understand molecular rearrangements towards the design of synthetic processes. The impact of the presence of the PAN on the DMF solution properties were also benchmarked with pure DMF solution.