25 resultados para tissue remodelling gene

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM40/Osteonectin is a matricellular protein with multiple effects on cell behaviour. In vitro, its major known functions are anti-adhesive and anti-proliferative, and it is associated with tissue remodelling and cancer in vivo. SPARC is overexpressed in many cancers, including breast cancer, and the effects of SPARC seem to be cell type-specific. To study the effects of SPARC on breast cancer, we transfected SPARC into the MDA-MB-231 BAG, human breast cancer cell line using the Tet-On inducible system. By western analysis, we found low background levels in the MDA-MB-231 BAG and clone X parental cells, and prominent induction of SPARC protein expression after doxycycline treatment in SPARC transfected clones X5, X21, X24 and X75. Induction of SPARC expression did not affect cell morphology or adhesiveness to collagens type I and IV, but it slowed the rate of proliferation in adherent cultures. Cell cycle analysis showed that SPARC slowed the progression to S phase. Doxycycline induction of SPARC also slowed the rate of monolayer wound closure in the cultured wound healing assay. Thymidine inhibition of proliferation abrogated this effect, confirming that it was due to anti-proliferation rather than inhibition of migration. Consistent with this, we were unable to detect any differences in migration and Matrigel outgrowth analysis of doxycycline-stimulated cells. We conclude that SPARC is inhibitory to human breast cancer cell proliferation, and does not stimulate migration, in contrast to its stimulatory effects reported for melanoma (proliferation and migration) and glioma (migration) cells. Similar growth repression by SPARC has been reported for ovarian cancer cells, and this may be a common feature among carcinoma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Altered metabolism in tissues such as the liver, skeletal muscle and adipose tissue is observed in metabolic diseases characterized by nutrient excess and energy imbalance, such as obesity and type 2 diabetes. These alterations in metabolism can include resistance to the hormone insulin, lipid accumulation, mitochondrial dysfunction and transcriptional remodelling of major metabolic pathways. The underlying assumption has been that these same alterations in metabolism are fundamental to the pathogenesis of metabolic diseases. An alternative view is that these alterations in metabolism occur to protect cell and tissue viability in the face of constant positive energy balance. This speculative review presents evidence that many of the metabolic adaptations that occur in metabolic diseases characterized by nutrient excess can be viewed as protective in nature, rather than pathogenic per se for disease progression. Finally, we also briefly discuss the usefulness and potential pitfalls of therapeutic approaches that attempt to correct these same metabolic defects when energy balance is not altered, and the potential links between metabolic survival responses and other chronic diseases such as cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Variability in human taste perception is associated with both genetic and environmental factors. The influence of taste receptor expression on this variability is unknown, in part, due to the difficulty in obtaining human oral tissue that enables quantitative expression measures of taste genes. In a comparison of six current techniques (Oragene RNeasy Kit, Isohelix swab, Livibrush cytobrush, tongue saliva, cheek saliva collection, and fungiform papillae biopsy), we identify the fungiform papillae biopsy is the optimal sampling technique to analyse human taste gene expression. The fungiform papillae biopsy resulted in the highest RNA integrity, enabling amplification of all the assessed taste receptor genes (TAS1R1, TAS1R2, TAS1R3, SCNN1A and CD36) and taste tissue marker genes (NCAM1, GNAT3 and PLCβ2). Furthermore, quantitative expression was observed in a subset of taste genes assessed from the saliva collection techniques (cheek saliva, tongue saliva and Oragene RNA kit). These saliva collection techniques may be useful as a non-invasive alternative sampling technique to the fungiform papillae biopsy. Identification of the fungiform papillae biopsy as the optimal collection method will facilitate further research into understanding the effect of gene expression on variability in human taste perception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Skeletal muscle is a complex and heterogenous tissue capable of remarkable adaptation in response to exercise training. The role of gene transcription, as an initial target to control protein synthesis, is poorly understood.
2. Mature myofibres contain several hundred nuclei, all of which maintain transcriptional competency, although the localized responsiveness of nuclei is not well known. Myofibres are capable of hypertrophy. These processes require the activation and myogenic differentiation of mononuclear satellite cells that fuse with the enlarging or repairing myofibre.
3. A single bout of exercise in human subjects is capable of activating the expression of many diverse groups of genes.
4. The impact of repeated exercise bouts, typical of exercise training, on gene expression has yet to receive systematic investigation.
5. The molecular programme elicited by resistance exercise and endurance exercise differs markedly. Muscular hypertrophy following resistance exercise is dependent on the activation of satellite cells and their subsequent myogenic maturation. Endurance exercise requires the simultaneous activation of mitochondrial and nuclear genes to enable mitochondrial biogenesis.
6. Future analysis of the regulation of genes by exercise may combine high-throughput technologies, such as gene-chips, enabling the rapid detection and analysis of changes in the expression of many thousands of genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endurance exercise transiently increases the mRNA of key regulatory proteins involved in skeletal muscle metabolism. During prolonged exercise and subsequent recovery, circulating plasma fatty acid (FA) concentrations are elevated. The present study therefore aimed to determine the sensitivity of key metabolic genes to FA exposure, assessed in vitro using L6 myocytes and secondly, to measure the expression of these same set of genes in vivo, following a single exercise bout when the post-exercise rise in plasma FA is abolished by acipimox. Initial studies using L6 myotubes demonstrated dose responsive sensitivity for both PDK4 and PGC-1α mRNA to acute FA exposure in vitro. Nine active males performed two trials consisting of 2 h exercise, followed by 2 h of recovery. In one trial, plasma FA availability was reduced by the administration of acipimox (LFA), a pharmacological inhibitor of adipose tissue lipolysis, and in the second trial a placebo was provided (CON). During the exercise bout and during recovery, the rise in plasma FA and glycerol was abolished by acipimox treatment. Following exercise the mRNA abundance of PDK4 and PGC-1α were elevated and unaffected by either acipimox or placebo. Further analysis of skeletal muscle gene expression demonstrated that the CPT I gene was suppressed in both trials, whilst UCP-3 gene was only modestly regulated by exercise alone. Acipimox ingestion did not alter the response for both CPT I and UCP-3. Thus, this study demonstrates that the normal increase in circulating concentrations of FA during the later stages of exercise and subsequent recovery is not required to induce skeletal muscle mRNA expression of several proteins involved in regulating substrate metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyunsaturated fatty acids (PUFA) are essential structural components of the central nervous system. Their role in controlling learning and memory has been well documented. A nutrigenomic approach with high-density microarrays was used to reveal brain gene-expression changes in response to different PUFA-enriched diets in rats. In aged rats fed throughout life with PUFA-enriched diets, genes with altered expressions included transthyretin, α-synuclein, and calmodulins, which play important roles in synaptic  plasticity and learning. The effect of perinatal omega-3 PUFA supply on gene expression later in life also was studied. Several genes showed similar changes in expression in rats fed omega-3-deficient diets in the perinatal period, regardless of whether they or their mothers were fed omega-3 PUFA-sufficient diets after giving birth. In this experiment, among the down-regulated genes were a kainate glutamate receptor and a DEAD-box polypeptide. Among the up-regulated genes were a chemokine-like factor, a tumor necrosis factor receptor, and cytochrome c. The possible involvement of the genes with altered expression attributable to different diets in different brain regions in young and aged rats and the possible mode of regulatory action of PUFA also are discussed. We conclude that PUFA-enriched diets lead to significant changes in expression of several genes in the central nervous tissue, and these effects appear to be mainly independent of their effects on membrane composition. The direct effects of PUFA on transcriptional modulators, the downstream developmentally and tissue-specifically activated elements might be one of the clues to understanding the beneficial effects of the omega-3 PUFA on the nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impaired glucose uptake is associated with both cardiac hypertrophy and contractile dysfunction, but whether there are common underlying  mechanisms linking these conditions is yet to be determined. Using a ‘gene dose’ Cre-Lox GLUT4-deficient murine model, we examined the effect of suppressed glucose availability on global myocardial gene expression and glycolysis substrate bypass on the function of isolated perfused hearts. Performance of hearts from 22- to 60-week-old male GLUT4 knockout (KO, > 95% reduction in GLUT4), GLUT4 knockdown (KD, 85% reduction in cardiac GLUT4) and C57Bl/6 wild-type (WT) controls was measured ex vivo in Langendorff mode perfusion. DNA microarray was used to profile mRNA expression differences between GLUT4-KO and GLUT4-KD hearts. At 22 weeks, GLUT4-KO hearts exhibited cardiac hypertrophy and impaired contractile function ex vivo, characterized by a 40% decrease in developed pressure. At 60 weeks, dysfunction was accentuated in GLUT4-KO hearts and evident in GLUT4-KD hearts. Exogenous pyruvate (5 mM) restored systolic pressure to a level equivalent to WT (GLUT4-KO, 176.8 ± 13.2 mmHg vs. WT, 146.4 ± 9.56 mmHg) in 22-week-old GLUT4-KO hearts but not in 60-week-old GLUT4-KO hearts. In GLUT4-KO, DNA microarray analysis detected downregulation of a number of genes centrally involved in mitochondrial oxidation and upregulation of other genes indicative of a shift to cytosolic β-oxidation of long chain fatty acids. A direct link between cardiomyocyte GLUT4 deficiency, hypertrophy and contractile dysfunction is demonstrated. These data provide mechanistic insight into the myocardial metabolic adaptations associated with short and long-term insulin resistance and indicate a window of opportunity for substrate intervention and functional ‘rescue’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpα promoter. We find that C/ebpα is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpα promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of how tea and epigallocatechin-3-gallate (EGCG) lower body fat are not completely understood. This study investigated long-term administration of green tea (GT), black tea (BT), or isolated EGCG (1 mg/kg per day) on body composition, glucose tolerance, and gene expression related to energy metabolism and lipid homeostasis; it was hypothesized that all treatments would improve the indicators of metabolic syndrome. Rats were fed a 15% fat diet for 6 months from 4 weeks of age and were supplied GT, BT, EGCG, or water. GT and BT reduced body fat, whereas GT and EGCG increased lean mass. At 16 weeks GT, BT, and EGCG improved glucose tolerance. In the liver, GT and BT increased the expression of genes involved in fatty acid synthesis (SREBP-1c, FAS, MCD, ACC) and oxidation (PPAR-α, CPT-1, ACO); however, EGCG had no effect. In perirenal fat, genes that mediate adipocyte differentiation were suppressed by GT (Pref-1, C/EBP-β, and PPAR-γ) and BT (C/EBP-β), while decreasing LPL, HSL, and UCP-2 expression; EGCG increased expression of UCP-2 and PPAR-γ genes. Liver triacylglycerol content was unchanged. The results suggest that GT and BT suppressed adipocyte differentiation and fatty acid uptake into adipose tissue, while increasing fat synthesis and oxidation by the liver, without inducing hepatic fat accumulation. In contrast, EGCG increased markers of thermogenesis and differentiation in adipose tissue, while having no effect on liver or muscle tissues at this dose. These results show novel and separate mechanisms by which tea and EGCG may improve glucose tolerance and support a role for these compounds in obesity prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.      Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases.

2.      Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression.

3.      Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response.

4.      The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified.

5.      Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases.

6.      Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT1 ha. The 5-HT1 ha shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT1 ha is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT1 ha belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT1 ha  mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT1 ha specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT1 ha immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Male fertility in flowering plants is dependent on production of viable pollen grains within the anther. Genes expressed exclusively in the anther are likely to include those that control male fertility. On the basis of their tissue specificity, such genes have been isolated, yet in none of them has this function been demonstrated. Here we report that one such gene, Bcp1, is active in both diploid tapetum and haploid microspores and is required for pollen fertility. Perturbation of this gene in either tapetum or microspores prevents production of fertile pollen in transgenic Arabidopsis plants. When tapetum expression of this gene is perturbed, mature anthers contain dead shriveled pollen. On the other hand, when microspore expression is perturbed, anthers show 1:1 segregation of viable/aborted pollen. These findings identify a class of sporophytic/gametophytic genes controlling male fertility and, hence, reproduction in flowering plants.