10 resultados para time-resolved fast spectroscopy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved fluorescence microscopy has rapidly emerged as the technique of choice for many researchers aiming to gain specific insights into the dynamics of intricate biological systems. Although the unique advantages the technique provides over other methods have proven to be particularly useful in the biosciences, to date they have been largely unexploited by other research disciplines. In this paper, we demonstrate the capacity of time-resolved fluorescence microscopy as a practical analytical tool in the forensic sciences via the imaging of gunshot residues that are expelled when a firearm is discharged. This information may prove to be useful for determination of the true sequence of events that took place in a firearm related crime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved extinction spectroscopy is employed to study the reaction kinetics in the shape-conversion reaction involving halide ions (including Cl-, Br- and I-) etching (sculpturing) silver nanoplates. A series of time-resolved extinction spectra are obtained during the in situ etching process and the evolution of surface plasmon resonance (SPR) of the silver nanoparticles is analyzed. Spectral analysis indicates that the conversion of nanoprisms starts simultaneously with the emergence of nanodisks when the halide ions are added. The etching rate of different halide ions is evaluated through the in-plane dipole resonance peak intensity of silver nanoplates vs. the reaction time (dI/dt). The relationship between the etching rate and the halide ion concentration shows that the halide ion etching reaction can be considered as a pseudo-first-order reaction. The effect of different halide ions on the shape-conversion of silver nanoplates is compared in detail. The activation energy of the etching reaction is calculated, which indicates that the etching ability of different halide ions is on the order of Cl - < I- < Br-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform silver submicrospheres were synthesized under ambient conditions, through reduction of silver nitrate using ascorbic acid as a reducing agent and Tween 20 as a stabilizer. The silver submicroparticles exhibited strong catalytic activity for the reduction of 4-nitrophenol by sodium borohydride (NaBH4). Significantly, the aggregates of a few silver submicroparticles can be used as surface-enhanced Raman scattering (SERS) substrate to improve markedly the Raman signal of crystal violet. The morphologies of silver submicroparticles can be controlled by changing reaction conditions. The formation process of silver submicroparticles was monitored by time-resolved extinction spectroscopy. The influences of concentrations and molar ratios of reaction reagents on the formation of silver submicroparticles are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved extinction spectra assisted with two-dimensional correlation spectroscopy (2DCOS) analysis and principal component analysis (PCA) were employed to investigate the interaction between bovine serum albumin (BSA) and metal nanoparticles (NPs). A series of localized surface plasmon resonance (LSPR) spectra of metal NPs were measured just after a small amount of BSA was added into metal colloids. Through 2DCOS analysis, remarkable changes in the intensities of the LSPR were observed. The interaction process was totally divided into three periods according to the PCA. Transmission electron microscopy, dynamic light scattering, and ζ-potential measurements were also employed to characterize the interaction between BSA and metal NPs. The addition of BSA brings silver NPs to aggregate through the electrostatic interaction between them, but it has less effect on gold NPs. In a gold and silver mixed system, gold NPs can affect the interaction of silver NPs and BSA, leading it to weaken. The combination of 2DCOS analysis and LSPR spectroscopy is powerful for exploring the LSPR spectra of the metal NP involved systems. This combined technique holds great potential in LSPR sensing through analysis of slight, slim spectral changes of metal colloids

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new versatile computer controlled electrochemlcal/ESR data acquisition system has been developed for the Investigation of short-lived radicals with life-times of 20 milliseconds and greater, Different computer programs have been developed to monitor the decay of radicals; over hours or minutes, seconds or milliseconds. Signal averaging and Fourier smoothing is employed in order to improve the signal to noise ratio. Two microcomputers are used to control the system, one home-made computer containing the M6800 chip which controls the magnetic field, and an IBM PC XT which controls the electrochemistry and the data acquisition. The computer programs are written in Fortran and C, and call machine language subroutines, The system functions by having the radical generated by an electrochemical pulse: after or during the pulse the ESR data are collected. Decaying radicals which have half-lives of seconds or greater have their spectra collected in the magnetic field domain, which can be swept as fast as 200 Gauss per second. The decay of the radicals in the millisecond region is monitored by time-resolved ESR: a technique in which data is collected in both the time domain and in the magnetic field domain. Previously, time-resolved ESR has been used (without field modulation) to investigate ultra-short-lived species with life-times in the region of only a few microseconds. The application of the data acquisition system to chemical systems is illustrated. This is the first time a computer controlled system whereby the radical is generated by electrochemical means and subsequently the ESR data collected, has been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acceptance/rejection approach is widely used in universal nonuniform random number generators. Its key part is an accurate approximation of a given probability density from above by a hat function. This article uses a piecewise constant hat function, whose values are overestimates of the density on the elements of the partition of the domain. It uses a sawtooth overestimate of Lipschitz continuous densities, and then examines all local maximizers of such an overestimate. The method is applicable to multivariate multimodal distributions. It exhibits relatively short preprocessing time and fast generation of random variates from a very large class of distributions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite electrolytes of a fully amorphous trifunctional polyether (3PEG) and poly- (methylene ethylene oxide) (PMEO) have been complexed with two lithium salts and nanoparticulate (~20 nm) fillers of TiO2 and Al2O3. Addition of the fillers to the polymer salt complexes shows a significant change in the conformational modes of both polymers, especially the D-LAM region between 200 and 400 cm-1, indicating a reduced segmental flexibility of the chain. These changes are more pronounced with the use of TiO2 than Al2O3. Incorporation of the nanoparticulate fillers to the electrolytes fails to influence the degree of ion association, suggesting that the number of charge carriers available for conduction in both polymers using both LiClO4 and LiCF3SO3 is not the source of any conductivity increase. Addition of the fillers, which was seen to increase the conductivity in PEO-based systems, generally lowers the conductivity in the present PMEO systems, while the addition of TiO2 has little or no effect except in the cases of 3PEG 1.5 and 1.25 mol/kg LiClO4. In this case, 10 wt % TiO2 provides a conductivity increase of half an order of magnitude at approximately 60 °C. We also report for the first time a Raman spectroscopy investigation into the PEO-based nanocomposite electrolytes. The present results are discussed in terms of the electrostatic interactions involving dielectric properties of the fillers, of special interest being the interactions between the polymer and the fillers and between the ionic species and the fillers, when the effect of crystallization can be ignored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intergallery expansion development of a series of differently modified montmorillonite polystyrene nanocomposites was directly observed with time-resolved in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. The results indicated that the interlayer expansion varied depending on the clay modification and the chemical compatibility of the clay modifiers with the styrene monomer. The influence of the differently modified clays on the free radical polymerization was also investigated, particularly the effect on the conversion of styrene and molecular weight evolution of the polymer. On the basis of the kinetic study of the polymerization of styrene in the presence of varied modified clay particles, the intergallery expansion mechanism was postulated and discussed for different composite morphologies. Such studies provide an important guideline for the design of clay modifiers and development of clay–polymer nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.