50 resultados para tightening torque

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated the importance of maximal Torque-Cadence (T-C) and Power-Cadence (P-C) relationships, for the performances of world class track sprint cyclists. If these relationships are affected by the function of the lower limb muscles, the ability of cyclists to generate torque and power at a given cadence may vary depending on their riding position. During sprint events (individual and team sprints and Keirin), cyclists alternate between standing and seated positions. The T-C and P-C relationships may change with the position adopted by the cyclists. PURPOSE: The aim of this study was to evaluate the necessity to define position specific maximal T-C and P-C relationships. METHODS: Eight junior elite track cyclists from the National Talent Identification squad undertook two inertial-load tests that consisted of four all-out sprints each. One test was undertaken at the velodrome in a standing position on a carbon fibre track bike, and the other test was completed in a seated position on an air-braked stationary ergometer. A calibrated SRM power meter interfaced to a custom instrumentation package was used for all mechanical measurements. Maximal T-C and P-C relationships were analysed to calculate maximal Torque (T0), maximal Power (Pmax) and optimal pedalling cadence (PCopt). RESULTS: All individual T-C and P-C relationships obtained for both body positions were fitted by linear regressions (r2=0.95 ± 0.02) and second order polynomials (r2=0.96 ± 0.01), respectively. T0 was higher (209 ± 2.2N.m vs. 177.0 ± 3.9N.m, p<0.05), PCopt was lower (112.5 ± 11.4rpm vs. 120.1 ± 6.7rpm, p<0.05), and Pmax was higher (1261 ± 235W vs. 1076 ± 183W, p<0.05) in standing position compared to seated position. CONCLUSION: Analysis of track sprint cyclists’ performances can be improved by the determination of position-specific maximal T-C and P-C relationships .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effectiveness of resistance training to preserve submaximal plantar flexor (PF) torque steadiness following 60 days of bed rest (BR). Twenty-two healthy male subjects underwent either BR only (CTR, n=8), or BR plus resistance training (RT, n=14). The magnitude of torque fluctuations during steady submaximal isometric PF contractions (20%, 40%, 60% and 80% of maximum) were assessed before and after BR. Across contraction intensities, torque fluctuations (coefficient of variation, CV) increased more (P<0.05) after BR for CTR (from 0.31±0.10 to 0.92±0.63; P<0.001), than for RT (from 0.30±0.09 to 0.54±0.27; P<0.01). A shift in the spectral content of torque fluctuations towards increased rhythmic activity between 6.5 and 20Hz was observed in CTR only (P<0.05). H-reflex amplitude (H(max)/M(max) ratio) declined across groups from 0.57±0.18 before BR to 0.44±0.14 following BR (P<0.01) without correlation to CV. The present study showed that increased torque fluctuation after BR resulted from enhanced physiological tremor. Resistance training prevented the spectral shift in isometric PF torque fluctuation and offset ∼50% of the decline in performance associated with long-term BR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a five-level cascaded H-bridge multilevel inverters topology is applied on induction motor control known as direct torque control (DTC) strategy. More inverter states can be generated by a five-level inverter which improves voltage selection capability. This paper also introduces two different control methods to select the appropriate output voltage vector for reducing the torque and flux error to zero. The first is based on the conventional DTC scheme using a pair of hysteresis comparators and look up table to select the output voltage vector for controlling the torque and flux. The second is based on a new fuzzy logic controller using Sugeno as the inference method to select the output voltage vector by replacing the hysteresis comparators and lookup table in the conventional DTC, to which the results show more reduction in torque ripple and feasibility of smooth stator current. By using Matlab/Simulink, it is verified that using five-level inverter in DTC drive can reduce the torque ripple in comparison with conventional DTC, and further torque ripple reduction is obtained by applying fuzzy logic controller. The simulation results have also verified that using a fuzzy controller instead of a hysteresis controller has resulted in reduction in the flux ripples significantly as well as reduces the total harmonic distortion of the stator current to below 4 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Victoria Nourse has observed that political debates about crime legislation are predictable and invariably one-sided because ‘no-one is “for” crime.’1 This certainly appears to be the case with regard to recent proposed changes to the Bail Act 1977 (‘the Act’) by the government of Victoria. The reforms were triggered by the case of Sean Price, an offender with a history of mental disorder, serious offending and lengthy incarceration who was on bail and subject to a supervision order when he murdered Masa Vukotic, raped another woman and assaulted a third person in March 2015. The Premier of Victoria, Daniel Andrews, stated that a bail system that allowed Price to be free and unmonitored was failing the community and pledged to repair ‘a system that is broken.’

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compression test with rotating dies was employed to estimate the friction factor between aluminum samples and steel tooling during large plastic deformations. A cylindrical workpiece was compressed under dry and cold conditions. The magnitudes of torque and normal force were measured and
the average friction factor was calculated using the Coulomb friction law. It was found that under certain conditions the friction increased with increasing angular velocity of the die. This finding led to the conclusion that the choice of die rotation speed is important in interpreting the results from the twist compression test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a simple and reliable method for controlling the relative orientation between the two magnetic fields of a permanent magnet synchronous motor. Finding the initial (at motor powering- up time) value of this relative location is essential for the proper operation of the motor. After showing the system controllability, the utilized feedback control loop finds this initial relative orientation quickly and accurately. Further, using the proposed method allows considerable cost saving, as a transducer that is usually used for this purpose can be eliminated. The cost saving is most obvious in the case of linear motors and angle motors with large diameters. The way the problem is posed is an essential part of this work, and it is the reason behind the apparent simplicity of the solution. The method proposed relies on a single sensor, and it was tested when a relative encoder was used.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the clinical features of patellar tendinopathy (PT), with focus on individuals with unilateral and bilateral PT. A cross-sectional study design was employed to compare individuals with unilateral (n = 14) or bilateral (n = 13) PT and those without PT (control, n = 31). Features assessed included thigh strength (normalized peak knee extensor torque) and flexibility (sit-and-reach and active knee extension), calf endurance (heel-rise test), ankle flexibility (dorsiflexion), alignment measures (arch height and leg length difference), and functional measures (hop for distance and 6 m hop test). Groups were matched for age and height; however, unilateral and bilateral PT had greater mass with a higher body mass index (BMI) than control. Also, bilateral PT performed more sport hours per week than both unilateral PT and control. Unilateral PT had less thigh strength than control and bilateral PT, whereas bilateral PT had more thigh flexibility than control and unilateral PT. Both unilateral and bilateral PT had altered alignment measures compared to control. Features that predicted symptoms in PT were lower thigh flexibility and strength, whereas those that predicted function were higher thigh strength and lower ankle flexibility.  These findings indicate that unilateral and bilateral PT represent distinct entities, and that thigh strength appears particularly important in PT as it predicted both symptoms and function in PT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new robotic grinding process has been developed for a low-powered robot system using a spring balancer as a suspension system. To manipulate a robot-arm in the vertical plane, a large actuator torque is required due to the tool weight and enormous gravity effect. But the actuators of the robot system always exhibit a limited torque capacity. This paper presents a cheap and available system for precise grinding tasks by a low-powered robot system using a suspension system. For grinding operations, to achieve position and force-tracking simultaneously, this paper presents an algorithm of the hybrid position/force-tracking scheme with respect to the dynamic behavior of a spring balancer. Material Removal Rate (MRR) is developed for materials SS400 and SUS304. Simulations and experiments have been carried out to demonstrate the feasibility of the proposed system.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of Fields and Backofen has been commonly used to reduce the data obtained by hot torsion test into flow curves. The method, however, is most suitable for materials with monotonic strain hardening behaviour. Other methods such as Stüwe’s method, tubular specimens, differential testing and the inverse method, each suffer from similar drawbacks. It is shown in the current work that for materials with multiple regimes of hardening any method based on an assumption of constant hardening indices introduces some errors into the flow curve obtained from the hot torsion test. Therefore such methods do not enable accurate prediction of onset of recrystallisation where slow softening occurs. A new method to convert results from the hot torsion test into flow curves by taking into account the variation of constitutive parameters during deformation is presented. The method represents the torque twist data by a parametric linear least square model in which Euler and hyperbolic coefficients are used as the parameters. A closed form relationship obtained from the mathematical representation of the data is employed next for flow stress determination. Two different solution strategies, the method of normal equations and singular value decomposition, were used for parametric modelling of the data with hyperbolic basis functions. The performance of both methods is compared. Experimental data obtained by FHTTM, a flexible hot torsion test machine developed at IROST, for a C–Mn austenitic steel was used to demonstrate the method. The results were compared with those obtained using constant strain and strain rate hardening characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During gait termination at normal walking speed, older adults more frequently employ two-step responses, increasing their stopping distance and stopping time more than younger controls. This study investigated ageing effects on lower limb muscle recruitment patterns during stopping at three walking speeds. Twelve young male (26±3.7 years, range 19–30) and 12 gender-matched older participants (72±4.3 years, range 65–82) terminated walking at normal, medium and maximum speed. A visual stopping stimulus was presented 10 ms following either left or right heel-contact with no stimulus (catch) on 30% of trials. Electromyographic (EMG) activity was recorded from the tibialis anterior (TA), soleus (SOL), biceps femoris (BF), vastus lateralis (VL) and gluteus medius (GM). Older males more frequently (46% of trials) took two-steps to stop than young males (20%). The stance leg muscles responded significantly faster than the swing leg, and with increased speed, fewer swing limb muscles contributed to stopping. Older males were slower to respond with the stance leg, at 215 ms following the stimulus compared with 176 ms for the younger group. They also recruited fewer swing leg muscles with less frequent activation of the soleus and gluteus medius. Failure to activate muscles would provide less extensor torque to maintain the centre of gravity anterior to the forward base of support. This would decrease the total force opposing horizontal velocity in order to bring the body to rest and, as a consequence, encourage an additional step prior to stopping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple and available system for manipulation of heavy tools by low powered manipulator for industrial applications. In the heavy manufacturing industries, sometimes, heavy tools are employed for different types of work. But the application of robots with heavy tools is not possible due to the limited torque limits of actuators. Suspended tool systems (STS) have been proposed to manipulate heavy tools by low powered robot-arm for this purpose. A low powered five-bar direct-drive parallel manipulator is designed and constructed to manipulate heavy tools suspended from a spring balancer. The validity, usefulness, and effectiveness of the suspended tool system are shown by experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: A nonlinear dynamic systems model has previously been proposed to explain pacing strategies employed during exercise.

Purpose: This study was conducted to examine the pacing strategies used under varying conditions during the cycle phase of an Ironman triathlon.

Methods: The bicycles of six well-trained male triathletes were equipped with SRM power meters set to record power output, cadence, speed, and heart rate. The flat, three-lap, out-and-back cycle course, coupled with relatively consistent wind conditions (17-30 km·h-1), enabled comparisons to be made between three consecutive 60-km laps and relative wind direction (headwind vs tailwind).

Results: Participants finished the cycle phase (180 km) with consistently fast performance times (5 h, 11 ± 2 min; top 10% of all finishers). Average power output (239 ± 25 to 203 ± 20 W), cadence (89 ± 6 to 82 ± 8 rpm), and speed (36.5 ± 0.8 to 33.1 ± 0.8 km·h-1) all significantly decreased with increasing number of laps (P < 0.05). These variables, however, were not significantly different between headwind and tailwind sections. The deviation (SD) in power output and cadence did not change with increasing number of laps; however, the deviations in torque (6.8 ± 1.6 and 5.8 ± 1.3 N·m) and speed (2.1 ± 0.5 and 1.6 ± 0.3 km·h-1) were significantly greater under headwind compared with tailwind conditions, respectively. The median power frequency tended to be lower in headwind (0.0480 ± 0.0083) compared with tailwind (0.0531 ± 0.0101) sections.

Conclusion:
These data show evidence that a nonlinear dynamic pacing strategy is used by well-trained triathletes throughout various segments and conditions of the Ironman cycle phase. Moreover, an increased variation in torque and speed was found in the headwind versus the tailwind condition.