78 resultados para through pores formation

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670m(2)/g), small diameter (120nm) and uniform pore size (2.5nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstructure and crystallographic texture development in an austenitic Ni-30 pct Fe model alloy was investigated within the dynamic recrystallization (DRX) regime using hot torsion testing. The prominent DRX nucleation mechanism was strain-induced grain boundary migration accompanied by the formation of large-angle sub-boundaries and annealing twins. The increase in DRX volume fraction occurred through the formation of multiple twinning chains. With increasing strain, the pre-existing Σ3 twin boundaries became gradually converted to general boundaries capable of acting as potent DRX nucleation sites. The texture characteristics of deformed grains resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Similarly, the texture of DRX grains was dominated by low Taylor factor components as a result of their lower consumption rate during the DRX process. The substructure of deformed grains was characterized by “organized,” banded subgrain arrangements, while that of the DRX grains displayed “random,” more equiaxed subgrain/cell configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bake-hardening (BH) behavior of TRansformation Induced Plasticity (TRIP) and Dual-Phase (DP) steels after intercritical annealing (IA) has been studied using transmission electron microscopy, X-ray diffraction and three dimensional atom probe tomography. It was found for the DP steel that carbon can segregate to dislocations in the ferrite plastic deformation zones where there is a high dislocation density around the "asquenched" martensite. The carbon pinning of these dislocations, in turn, increases the yield strength after aging. It was shown that bake-hardening also leads to rearrangement of carbon in the martensite leading to the formation of rod-like low temperature carbides in the DP steel. Segregation of carbon to microtwins in retained austenite of the TRIP steel was also evident. These factors, in combination with the dislocation rearrangement in ferrite through the formation of cells and microbands in the TRIP steel after pre-straining, lead to the different bake-hardening responses of the two steels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-temperature active-screen plasma nitriding is an effective surface engineering technology to improve the wear and corrosion resistance of austenitic stainless steel through the formation of expanded austenite. The material sputtered from the active screen and redeposited on the specimens has been suggested to play an important role in the nitriding mechanism involved. This paper reports a patterned deposition layer, which is in correlation with the grain orientation of polycrystalline specimens. This has provided new insights into the nitriding mechanism. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hot torsion testing of a C–Mn–V steel was used to study the evolution of  ultrafine ferrite (UFF) formation by dynamic strain-induced transformation (DSIT) in conjunction with air-cooling for two prior austenite grain sizes. This study evaluated not only the evolution of DSIT ferrite during straining, but also the grain growth behaviour of DSIT ferrite grains during post-deformation cooling. For both austenite grain sizes, the DSIT ferrite initially nucleated on/or near prior austenite grain boundaries at an early stage of transformation followed by the grain interiors. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary (GB) and the intragranular ferrite (IG) grains during post-deformation cooling. For the fine prior austenite grain size, the distribution of DSIT ferrite grains was more homogenous compared with the coarse austenite and the coarsening occurred not only in the GB ferrite grains but also in the IG ferrite grains. However, the ferrite coarsening mostly occurred for the IG ferrite rather than the GB ferrite grains in the coarse austenite. The result suggests that normal grain growth occurred during the overall transformation in the GB ferrite grains for the coarse initial austenite grain size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, wedge-shaped samples were used to determine the effect of nominal equivalent strain (between 0 and 1.2) and carbon content (0.06--0.35%C) on ferrite grain refinement through dynamic strain-induced transformation (DSIT) in plain carbon steels using single-pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain which could be classified into three regions; no DSIT region, DSIT region and the ultrafine ferrite (UFF) grain region. Also, the extent of these regions was strongly influenced by the carbon content. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μ$m) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite-pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with an increase in the nominal equivalent strain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, wedge-shape samples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is now considerable interest in the development of ultrafine grained steels with an average grain size of the order of 1µm. One of the methods with currently the greatest industrial interest is by dynamic strain induced transformation from austenite to ferrite. This involves deformation below the
equilibrium transformation temperature so that transformation occurs during the deformation. However, large strains are required to completely transform the microstructure during deformation. It is potentially possible to activate transformation during deformation then continue transformation
during subsequent cooling. It is shown that there are two critical strains: the first is where dynamic transformation commences and the second is the minimum strain for a fully ultrafine final microstructure after cooling to room temperature. The deformation and potential role of dynamic
recrystallization of the dynamically formed ferrite is also considered. Overall it is clear that for full industrial exploitation there is a need to understand and exploit the competing issues of nucleation, growth and recrystallization of the ferrite by both dynamic and static processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of ultrafine grained steels is an area of intense research around the World. There are a number of methods to produce grain sizes of approximately 1 µm, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. This paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. It is shown that this requires deformation within the Ae3 to Ar3 temperature range for a given alloy. The formation of ultrafine ferrite involves a dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation arises from the introduction of additional intragranular nucleation sites. It is possible that the deformation also hinders the growth or coarsening of the ferrite and may also lead to dynamic recrystallization of the ferrite. The most likely commercial exploitation of ultrafine ferrite would appear to rely on the formation of a critical volume fraction of dynamic strain induced ferrite followed by controlled cooling to ensure this is maintained to room temperature and to also form other secondary phases, such as martensite, bainite and/or retained austenite to improve the formability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The disciplines of nursing and midwifery both uphold a powerful oral tradition that can impact upon student learning. Students enrolled in a Graduate Diploma of Midwifery are supervised and assessed by midwives during their placements in midwifery practice settings by a program of 'preceptorship' support and where conversations are innate. Positioning theory, eveloped by Harre and others, is a metaphorical concept in which an individual 'positions' herself/himself within entities of encompassing people, institutions and societies where conversations are conducted either privately or publicly. As construction sites of professional learning, conversations are underpinned by reflective practices.In unravelling conversations, positioning may be applied as an analytical tool by educators to interpret the emerging meanings and themes in their discussions with students, reflective journals by students and in meetings with preceptors/midwives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrafine ferrite can be formed in steels through relatively simple thermomechanical processes. The ferrite nucleates intragranularly within the austenite grain on deformation features, which are favoured by heavy shear and large effective strains. It is also possible to produce ultrafine microstructures under multipass deformation conditions, although these may be due to dynamic recovery rather than strain induced transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement hanged with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain-induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni–30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperatures that then act as sites for static transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transport of water and ions across mimicked nanotube membranes with pseudo atoms is studied using molecular dynamics simulations under equilibrium conditions and hydrostatic pressure. Different pore surface properties are constructed by assigning partial charges on the sites of specified atoms to explore the influence of charges and polarity. The energetics of water and ion transports through the nanopores was calculated to evaluate their filterability to water. The simulation results show that the free energy barriers to water and ion conductions much depend on the charges at the pore entrance and the dipole within the pore. The membranes with hydrophobic pores and negatively charged entrances would be very efficient in the water transport and ion rejection. The charges and dipoles of the pore wall and the aligned dipoles of water molecules in the pore can create a significant force on ions.