14 resultados para thiophene

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Amino-3-benzoylthiophenes are allosteric enhancers (AE) of agonist activity at the A1 adenosine receptor. The present report describes syntheses and assays of the AE activity at the human A1AR (hA1AR) of a panel of compounds consisting of nine 2-amino-3-aroylthiophenes (3a-i), eight 2-amino-3-benzoyl-4,5-dimethylthiophenes (12a-h), three 3-aroyl-2-carboxy-4,5- dimethylthiophenes (15a-c), 10 2-amino-3-benzoyl-5,6-dihydro 4H-cyclopenta[b]thiophenes (17a-j), 14 2-amino-3-benzoyl-4,5,6,7-tetrahydrobenzo[b]thiophenes (18a-n), and 15 2-amino- 3-benzoyl-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophenes (19a-o). An in vitro assay employing the A1AR agonist [125I]ABA and membranes from CHO-K1 cells stably expressing the hA1AR measured, as an index of AE activity, the ability of a candidate AE to stabilize the agonist- A1AR-G protein ternary complex. Compounds 3a-i had little or no AE activity, and compounds 12a-h had only modest activity, evidence that AE activity depended absolutely on the presence of at least a methyl group at C-4 and C-5. Compounds 17a-c lacked AE activity, suggesting the 2-amino group is essential. Polymethylene bridges linked thiophene C-4 and C-5 of compounds 17a-j, 18a-n, and 19a-o. AE activity increased with the size of the -(CH2)n- bridge, n ) 3 < n ) 4 < n ) 5. The 3-carbethoxy substituents of 17a, 18a, and 19a did not support AE activity, but a 3-aroyl group did. Bulky (or hydrophobic) substituents at the meta and para positions of the 3-benzoyl group and also 3-naphthoyl groups greatly enhanced activity. Thus, the hA1AR contains an allosteric binding site able to accommodate 3-aroyl substituents that are bulky and/or hydrophobic but not necessarily planar. A second region in the allosteric binding site interacts constructively with alkyl substituents at thiophene C-4 and/or C-5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A class of new conjugated copolymers containing a donor (thiophene)−acceptor (2-pyran-4-ylidene-malononitrile) was synthesized via Stille coupling polymerization. The resulting copolymers were characterized by 1H NMR, elemental analysis, GPC, TGA, and DSC. UV−vis spectra indicated that the increase in the content of the thiophene units increased the interaction between the polymer main chains to cause a red-shift in the optical absorbance. Cyclic voltammetry was used to estimate the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) and the band gap (Eg) of the copolymers. The basic electronic structures of the copolymers were also studied by DFT calculations with the GGA/B3LYP function. Both the experimental and the calculated results indicated an increase in the HOMO energy level with increasing the content of thiophene units, whereas the corresponding change in the LUMO energy level was much smaller. Polymer photovoltaic cells of a bulk heterojunction were fabricated with the structure of ITO/PEDOT/PSS (30 nm)/copolymer−PCBM blend (70 nm)/Ca (8 nm)/Al (140 nm). It was found that the open-circuit voltage (Voc) increased (up to 0.93 V) with a decrease in the content of thiophene units. Although the observed power convention efficiency is still relatively low (up to 0.9%), the corresponding low fill factor (0.29) indicates considerable room for further improvement in the device performance. These results provided a novel concept for developing high Voc photovoltaic cells based on donor-π-acceptor conjugated copolymers by adjusting the donor/acceptor ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(terthiophene) is an electronically conducting polymer with potential applications in solar energy devices. In the present study a series of poly(terthiophene) (PTTh) films are chemically polymerized (CP) at various temperatures and compared with a novel method of vapour phase polymerization (VPP). Utilizing the thiophene trimer (terthiophene) as the starting material, polymerization is achieved with Fe(III) tosylate. The films are characterized by their Raman and absorption spectra, in addition to differential scanning calorimetry (DSC), optical microscopy, electrochemical impedance spectroscopy (EIS) and four-point probe surface conductivity measurements. From the spectroscopy studies, increased conjugation length of the polymer chains with decreasing temperature or vapour phase polymerization is evident. More surprisingly, DSC results indicate the order of the polymer chains is dramatically enhanced by vapour phase polymerization and the D.C. conductivity is an order of magnitude higher for VPP compared with traditional CP films. Additionally, the optical micrographs reveal a significantly different morphology than the films cast from solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stable magnesium battery has been developed based on a magnesium anode, a poly(dioxyethane thiophene) (PEDOT) cathode and a near-saturated aqueous solution of LiCl, MgCl2, or mixture of these salts at pH of 11. This combination leads to a low water activity in the electrolyte, which thus suppresses the hydrogen evolution reaction on Mg, as well as producing a stable oxy-hydroxide film which protects the metal surface from freely corroding. The conducting polymer cathode is reduced somewhat during the discharge process, however, appears to be readily re-oxidised (as determined from the resistance) by the oxygen present in the cell. The cell is therefore primarily a Mg/O2 battery, however, the PEDOT appears to enhance the performance, in particular the discharge voltage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-molecule nonvolatile additives based on ionic liquids (IL) as electrical conductivity enhancer in Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) was studied. Ionic liquids were investigated in the synthesis of self-assembled, highly organized hybrid nanostructures due to their ability as supramolecular solvents. Different percentage of five ionic liquids, such as 1-butyl-3-methylimidazolium tetrafluoroborate (bmim) F 4 and 1-butyl-3-methylimidazolium bromide (bmim)Br were added to a PEDOT:PSScommercial dispersion. Films of pure PEDOT:PSS showed an average conductivity of 14 S cm-1, which corresponded to the value range given by the supplier. AFM images showed that IL induced the formation of a three-dimensional conducting network with smaller PEDOT domains. The ionic character of the films was significantly increased because of the presence of ionic liquids, which can be used effectively in optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new metal (M) dithiolene complexes bearing terthiophene (3, 12, M = Ni; 4, M = Pd; 5, 6, M = Au) and 2,5-bis(para-methoxyphenyl)thiophene units (14, M = Ni; 15, 16, M = Au; 17, M = Pd) have been synthesised in 38–99% yield. The electrochemical properties of the materials have been characterised by cyclic voltammetry and UV-vis spectroelectrochemistry. The nickel complexes possess low oxidation potentials (−0.12 to −0.25 V vs Ag/AgCl) due to the electron-rich dithiolene centres and all complexes display ligand-based redox activity. The terthiophene derivatives have been polymerised by electrochemical oxidation to give stable films with, in the case of poly(3), broad absorption characteristics. Charge transfer materials have been isolated from 14 and 16 with conductivities in the range 9 × 10−6 to 7 × 10−8 S cm−1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, solution-processable non-fullerene electron acceptor, 6,6′-((9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (coded as N7), based on central carbazole and terminal diketopyrrolopyrrole building blocks was designed, synthesized and characterized. N7 displayed excellent solubility, thanks to its design allowing incorporation of numerous lipophilic chains, thermal stability, and afforded a 2.30% power conversion efficiency with a high open-circuit voltage (1.17 V) when tested with the conventional donor polymer poly(3-hexylthiophene) in solution-processable bulk-heterojunction devices. To our knowledge, not only is N7 the first reported chromophore based on carbazole and diketopyrrolopyrrole functionalities but the open-circuit voltage reported here is among the highest values for a single junction bulk-heterojunction device that has been fabricated using a simple device architecture, with reproducible outcomes and with no special treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two solution processable, non-fullerene electron acceptors, 2,2′-(((2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-exahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(methanylylidene))dimalononitrile (R1) and (2Z,2′Z)-3,3′-((2,7-dioctyl-1,3,6,8-tetraoxo-1,2,3,6,7,8-hexahydrobenzo[lmn][3,8]phenanthroline-4,9-diyl)bis(thiophene-5,2-diyl))bis(2-(4-nitrophenyl) acrylonitrile) (R2), comprised of central naphthalene diimide and two different terminal accepting functionalities, malononitrile and 2-(4-nitrophenyl)acetonitrile, respectively, were designed and synthesised. The central and terminal accepting functionalities were connected via a mild conjugated thiophene linker. Both of the new materials (R1 and R2) displayed high thermal stability and were found to have energy levels matching those of the archetypal electron donor poly(3-hexylthiophene). A simple, solution-processable bulk-heterojunction device afforded a promising power conversion efficiency of 2.24% when R2 was used as a non-fullerene electron acceptor along with the conventional donor polymer poly(3-hexylthiophene). To the best of our knowledge, the materials reported herein are the first examples in the literature where synchronous use of such accepting blocks is demonstrated for the design and development of efficient non-fullerene electron acceptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the conjunction of tetraphenylethylene and diketopyrrolopyrrole functionalities, a novel four-directional non-fullerene electron acceptor (denoted as 4D) was designed, synthesized and characterized. The new chromophore is highly soluble (for instance >30 mg mL(-1) in o-dichlorobenzene), thermally stable, and exhibits energy levels matching those of the conventional and routinely used donor polymer poly(3-hexyl thiophene). A power conversion efficiency of 3.86% was obtained in solution-processable bulk-heterojunction devices with a very high open circuit voltage of 1.18 V.