61 resultados para thermal properties

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weight reduction increased the amount of deposited polypyrrole (PPy) on the polyester (PET) fiber surface, leading to a considerable decrease in electrical resistance and improved heat generation capacity for the PPy coated PET fabrics. Application of dc voltages to an insulated roll of PPy-coated fabric increased the temperature to about 90 °C. This showed the suitability of these fabrics for heating applications. The optimum PPy deposition of about 2.8% was obtained in samples weight reduced by aqueous sodium hydroxide treatment. AFM images revealed a smooth surface morphology of the untreated fiber whereas the treated fiber had a high surface roughness.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal stability of electrochemically prepared polypyrrole (PPy) films with p-toluenesulfonate (pTS) or perchlorate (ClO4) counterion (PPy/pTS and PPy/ClO4) is improved by simple treatment with aqueous sulfuric acid, sodium sulfate or sodium bisulfate. The degree of stabilization achieved depends on the solution, temperature and duration of treatment. Although the mechanism for improved stability is not yet clear, it is apparent that the level of ion exchange and the original polymer microstructure are important. A model for the conductivity decay as a function of thickness has been proposed. The early stages of ion exchange are not symmetrical, and diffusion is facilitated at the electrode side of the film. Furthermore, X-ray diffraction shows no evidence of morphological change after treatment of PPy/pTS (43 μm), but in PPy/pTS (12 μm) and PPy/ClO4 (41 μm) films an additional peak is indicative of more ordered structure following treatment. The glass transition temperature, Tg, of PPy/pTS and PPy/ClO4 films obtained by modulated differential scanning calorimetry is approximately 155°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is perhaps the most pressing and urgent environmental issue facing the world today. However our ability to predict and quantify the consequences of this change is severely limited by the paucity of in situ oceanographic measurements. Marine animals equipped with sophisticated oceanographic data loggers to study their behavior offer one solution to this problem because marine animals range widely across the world’s ocean basins and visit remote and often inaccessible locations. However, unlike the information being collected from conventional oceanographic sensing equipment, which has been validated, the data collected from instruments deployed on marine animals over long periods has not. This is the first long-term study to validate in situ oceanographic data collected by animal oceanographers. We compared the ocean temperatures collected by leatherback turtles (Dermochelys coriacea) in the Atlantic Ocean with the ARGO network of ocean floats and could find no systematic errors that could be ascribed to sensor instability. Animal-borne sensors allowed water temperature to be monitored across a range of depths, over entire ocean basins, and, importantly, over long periods and so will play a key role in assessing global climate change through improved monitoring of global temperatures. This finding is especially pertinent given recent international calls for the development and implementation of a comprehensive Earth observation system (see http://iwgeo.ssc.nasa.gov/documents.asp?s=review) that includes the use of novel techniques for monitoring and understanding ocean and climate interactions to address strategic environmental and societal needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the high strength and stiffness of polymer nanocomposites, they usually display lower deformability and toughness relative to their matrices. Spider silk features exceptionally high stiffness and toughness via the hierarchical architecture based on hydrogen-bond (H-bond) assembly. Inspired by this intriguing phenomenon, we here exploit melamine (MA) to reinforce poly(vinyl alcohol) (PVA) via H-bond self-assembly at a molecular level. Our results have shown that due to the formation of physical cross-link network based on H-bond assembly between MA and PVA, yield strength, Young’s modulus, extensibility, and toughness of PVA are improved by 22, 25, 144, and 200% with 1.0 wt % MA, respectively. Moreover, presence of MA can enhance the thermal stability of PVA to a great extent, even exceeding some nanofillers (e.g., graphene). This work provides a facile method to improve the mechanical properties of polymers via H-bond self-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium hydrogenmelonate heptahydrate Ca[HC6N7(NCN)3]·7H2O was obtained by metathesis reaction in aqueous solution. The structure of the molecular salt was elucidated by single-crystal X-ray diffraction. The crystal structure consists of alternating layers of planar monopronated melonate ions, Ca2+ and crystal water molecules. The anions of adjacent layers are staggered so that no π–π stacking occurs. The melonate entities are interconnected by hydrogen bonds within and between the layers. Ca[HC6N7(NCN)3]·7H2O was investigated by solid-state NMR and FTIR spectroscopy, TG and DTA measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal diffusivity of silk fibroin films, α = (1.6 ± 0.24) × 10-7 m2 s-1, was measured by a direct contact method. It was shown to be reduced down to ∼1 × 10-7 m2 s-1 in the crystallized phase, consistent with the multi-domain composition of β-sheet assemblies. Crystalline silk with β-sheets was made by dipping into alcohol and was used as a positive electron beam lithography (EBL) resist. It is shown by direct IR imaging of the 1619 cm-1 amide-I CO spectral signature and 3290 cm-1 amide-A N-H stretching band that an e-beam is responsible for unzipping β-sheets, which subsequently results in exposed areas returning to a water soluble state. This makes it possible to develop a water-based biocompatible silk resist and use it in lithography applications. The general principles of protein crystallization, traceable to spectral changes in IR amide bands of silk, can be used as a guide for the creation of new protein EBL resists and to quantify the electron dose required for solubility. Foam formation and laser treatments of silk can provide new approaches in surface functionalization and fabrication of 3D bio-scaffolds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wool powders with different particle sizes were examined in terms of their crystal structures, thermal properties, surface chemical compositions and moisture regains. It was found that the crystallinity of wool powders was increased, and the moisture regains were decreased as the particle sizes of wool powders were reduced. For comparison, the properties of activated charcoal were also investigated. The higher dye uptake of activated charcoal at pH 10. compared to that of wool powder, could be due to its greater surface area and porous structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wool fabrics, ultrasonically treated in various chemical conditions and for different time durations, were analysed for thermal properties by thermo-gravimetric analysis and differential scanning calorimeter, in comparison with the untreated fabric. Fabric mechanical properties, such as bending and tensile performance, and changes in fibre morphology were also evaluated before and after ultrasonic treatment.It is found that wool treated with ultrasonics at the appropriate time, has less mass loss and a higher thermal degradation temperature than that without ultrasonic treatment or with prolonged ultrasonic treatment. Resistance to thermal degradation is reduced when wool is ultrasonically treated in the presence of alkali. Differential scanning calorimeter analysis shows that while ultrasonic treatment has little effect on fibre crystallinity, an appropriate treatment can provide wool with increased water absorption. Ultrasonic treatment stiffens wool fabric to some extent when the treatment time is prolonged. The addition of detergent alone to the ultrasonic bath has little effect on fabric tensile behaviour, whereas a treatment with both detergent and alkali produces severe fibre damage and significant loss of fabric tensile strength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends, with varying concentrations, were prepared by melt-mixing technique. The miscibility is ensured by fixing the acrylonitrile (AN) content of styrene acrylonitrile (SAN) as 25% by weight. The blends were transparent as well. The Fourier transform infrared spectroscopic (FTIR) studies did not reveal any specific interactions, supporting the well accepted 'copolymer repulsion effect' as the driving mechanism for miscibility. Addition of SAN increased the stability of PMMA towards ultraviolet (UV) radiations and thermal degradation. Incorporation of even 0.05% by weight of multi-walled carbon nanotubes (MWCNTs) significantly improved the UV absorbance and thermal stability. Moreover, the composites exhibited good strength and modulus. However, at higher concentrations of MWCNTs (0.5 and 1% by weight) the thermo-mechanical properties experienced deterioration, mainly due to the agglomeration of MWCNTs. It was observed that composites with 0.05% by weight of finely dispersed and well distributed MWCNTs provided excellent protection in most extreme climatic conditions. Thus, PMMA/SAN/MWCNTs composites can act as excellent light screens and may be useful, as cost-effective UV absorbers, in the outdoor applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An analysis was made of the Charles Sturt University Academic Office building at Thurgoona from a thermal comfort and energy viewpoint. It was found that the offices did not meet low energy criteria and some were uncomfortable for 30% to 85% of occupied hours.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Analyses the mechanisms that cause thermal run-away in some materials. A control strategy was devised to provide effective temperature control independent of material characteristics. The set of control criteria derived from mathematical models allowed the control limits of a microwave processing system to calculated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diglycidyl ether of bisphenol-A type epoxy resin cured with diamino diphenyl sulfone was used as the matrix for fiber-reinforced composites to get improved mechanical and thermal properties for the resulting composites. E-glass fiber was used for fiber reinforcement. The morphology, tensile, flexural, impact, dynamic mechanical, and thermal properties of the composites were analyzed. The tensile, flexural, and impact properties showed dramatic improvement with the addition of glass fibers. Dynamic mechanical analysis was performed to obtain the Tg of the cured matrix as well as the composites. The improved thermal stability of the composites was clear from the thermogravimetric analysis. Scanning electron micrographs were taken to understand the interfacial adhesion between the fiber and the matrix. The values of mechanical properties were compared with modified epoxy resin composite system. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wool fabrics, ultrasonically treated for different time durations, were analysed by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC), and thermo-gravimetric analysis (TGA), in comparison with the wool without ultrasonic treatment. Fabric tensile and thermal properties were measured in addition to the fibre micro structure analysis. Wool protein chains in the macro fibrils were shown to be rearranged to a more regular and less flexible structure, as a result of the ultrasonically treated fabric. Prolonged ultrasonic treatment, however, significantly reduced both fabric tenacity and extensibility. Wool treated with ultrasonics was found to have less mass loss and a higher thermal degradation temperature than that of without ultrasonic treatment and prolonged treated. DSC analysis showed that while ultrasonic treatment has little effect on the fibre crystallinity, an appropriate treatment can provide wool with increased water absorption.