10 resultados para thermal analyses

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT–polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe zwitterion, 3-(1-butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (Bimps), mixtures with 1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfoneamide (HN(Tf)2) as new proton transport electrolytes. We report proton transport mechanisms in the mixtures based on results from several methods including thermal analyses, the complex-impedance method, and the pulsed field gradient spin echo NMR (pfg-NMR) method. The glass transition temperature (Tg) of the mixtures decreased with increasing HN(Tf)2 concentration up to 50 mol %. The Tg remained constant at −55 °C with further acid doping. The ionic conductivity of HN(Tf)2 mixtures increased with the HN(Tf)2 content up to 50 mol %. Beyond that ratio, the mixtures showed no increase in ionic conductivity (10−4 S cm−1 at room temperature). This tendency agrees well with that of Tg. However, the self-diffusion coefficients obtained from the pfg-NMR method increased with HN(Tf)2 content even above 50 mol % for all component ions. At HN(Tf)2 50 mol %, the proton diffusion of HN(Tf)2 was the fastest in the mixture. These results suggest that Bimps cannot dissociate excess HN(Tf)2, that is, the excess HN(Tf)2 exists as molecular HN(Tf)2 in the mixtures. The zwitterion, Bimps, forms a 1:1 complex with HN(Tf)2 and the proton transport property in this mixture is superior to those of other mixing ratios. Furthermore, CH3SO3H and CF3SO3H were mixed with Bimps for comparison. Both systems showed a similar tendency, which differed from that of the HN(Tf)2 system. The Tg decreased linearly with increasing acid content for every mixing ratio, while the ionic conductivity increased linearly. Proton transport properties in zwitterion/acid mixtures were strongly affected by the acid species added.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of up to 4 mol% of the strong acids, trifluoromethane sulfonic acid (TfOH) and bis-trifluoromethanesulfonyl imide [HN(Tf) 2], to the organic ionic plastic crystal (OIPC) [Choline][DHP] has been shown to dramatically increase the ionic conductivity by up to three orders of magnitude whilst still retaining the crystalline structure of the OIPC matrix. This enhanced proton diffusivity led to a significant proton reduction reaction in the electrochemical measurements. Powder XRD and DSC thermal analyses strongly suggest that these mixtures are single phase, crystalline materials. The work here also confirms that an increase in TfOH acid concentration (8 mol% and 12 mol%) results in a higher content of the amorphous phase as previously observed for the H 3PO 4/[Choline][DHP] system. © 2012 The Royal Society of Chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction of the group 14 tetrachlorides MCl4 (M = Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures led to the unique anionic complexes [M(S2O7)3]2– that show the central M atoms in coordination of three chelating S2O72– groups. The mean distances M–O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S2O7)3]2– anions is achieved by alkaline metal ions A+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S2O7)3]2– anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg2[Ge(S2O7)3]Cl2 which forms when HgCl2 is added as a source for the counter cation. The Hg2+ and the Cl– ions form infinite cationic chains according to 1∞[HgCl2/2]+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A2SO4 and the dioxides MO2, whereas Hg2[Ge(S2O7)3]Cl2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na2[Si(S2O7)3] has additionally been examined by solid state 29Si and 23Na NMR spectroscopic measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticies have been widely used to enhance the properties of natural rubber (NR). In the present paper a novel nanocomposite was developed by blending nano-ZnO slurry with prevulcanized NR latex, and the thermal degradation process of pure NR and NR/ZnO nanocomposites with different nano-ZnO loading was studied with a Perkin Elemer TGA-7 thermogravimetric analyzer. The thermal degradation parameters of NR/ZnO (2 parts ZnO per hundred dlY rubber) at different heating rates (Bs) were studied. The results show that the thermal degradation of pure NR and NR/ZnO nanocomposites in nitrogen is a one-step reaction. The degradation temperatures of NR/ZnO nanocomposite increase with an increasing B. The peak height (Rp) on the differential thermogravimetric curve increases with the increase of B. The degradation rates are not affected significantly by B, and the average values of thermal degradation rate Cp and Cf are 44.42 % and 81.04 %, respectively. The thermal degradation kinetic parameters are calculated with Ozawa-Flynn-Wall method. The activation energy (E) and the frequency factor (A) vary with ecomposition degree, and can be divided into three phases corresponding to the volatilization of low-molecular-weight materials, the thermal degradation ofNR main chains and the decomposition of residual carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses the mechanisms that cause thermal run-away in some materials. A control strategy was devised to provide effective temperature control independent of material characteristics. The set of control criteria derived from mathematical models allowed the control limits of a microwave processing system to calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal comfort in outdoor places has proven to have a strong relationship with their users’ attendance and behaviour [1]. Creating comfortable places is therefore to be considered a crucial part of the design process, as taking it into consideration help increasing the social integration between people and therefore fosters sustainability within cities [2]. With the increasing number of migrants within global cities, a new challenge has been facing thermal comfort studies. This challenge is related to the different cultural and climatic origins of those migrants and how they can adapt to the new climatic conditions they are to move in. This paper aims to explore the impact of thermal comfort adaptation on users’ thermal perception in multicultural cities. Consequently, a quantitative field study is applied in Melbourne city, Australia in order to investigate peoples’ outdoor thermal comfort. The analyses were based upon the measurement of climatic parameters that were monitored simultaneously with a questionnaire to determine users’ thermal comfort perception in relation to their time spent in the city. The findings of thermal comfort investigations could be applied into improving the quality of urban areas within global cities and therefore promote the integration within individuals in those societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is expected to have a number of impacts on biological communities including range extensions and contractions. Recent analyses of multidecadal data sets have shown such monotonic shifts in the distribution of plankton communities and various fish species, both groups for which there is a large amount of historical data on distribution. However, establishing the implications of climate change for the range of endangered species is problematic as historic data are often lacking. We therefore used a different approach to predict the implications of climate change for the range of the critically endangered planktivourous leatherback turtle (Dermochelys coriacea). We used long-term satellite telemetry to define the habitat utilization of this species. We show that the northerly distribution limit of this species can essentially be encapsulated by the position of the 15°C isotherm and that the summer position of this isotherm has moved north by 330 km in the North Atlantic in the last 17 years. Consequently, conservation measures will need to operate over ever-widening areas to accommodate this range extension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic centres are popular recreational facilities in Australia and other developed countries. These buildings have experienced exponential demand over the past few decades. The growing desire for better indoor environmental quality in aquatic centres has resulted in a marked increase in energy consumption in this sector. With the existence of multiple user groups, achieving thermal comfort has always been challenging. Even though several thermal comfort studies are conducted in other building types, such studies are very limited with respect to aquatic centres. This paper analyses the thermal comfort conditions of various user groups in seven aquatic centres in Australia. Comfort measurements are performed through monitoring environmental parameters and surveying swimmers, staff and spectators. The results revealed the variation of air temperatures among the buildings, resulting in high level of thermal discomfort for the spectators and staff in some of the buildings. The thermal sensation of the staff and spectators had good correlation with the indoor temperatures and PMVs. Altering temperature settings according to the seasons will help to improve the comfort with respect to the adaptation and expectation of the occupants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental temperature has profound effects on animal physiology, ecology, and evolution. Glucocorticoid (GC) hormones, through effects on phenotypic performance and life history, provide fundamental vertebrate physiological adaptations to environmental variation, yet we lack a comprehensive understanding of how temperature influences GC regulation in vertebrates. Using field studies and metaand comparative phylogenetic analyses, we investigated how acute change and broadscale variation in temperature correlated with baseline and stress-induced GC levels. Glucocorticoid levels were found to be temperature and taxon dependent, but generally, vertebrates exhibited strong positive correlations with acute changes in temperature. Furthermore, reptile baseline, bird baseline, and capture stressinduced GC levels to some extent covaried with broadscale environmental temperature. Thus, vertebrate GC function appears clearly thermally influenced. However, we caution that lack of detailed knowledge of thermal plasticity, heritability, and the basis for strong phylogenetic signal in GC responses limits our current understanding of the role of GC hormones in species’ responses to current and future climate variation.