18 resultados para temperature distribution

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient heat conduction in a functionally graded graphite/polymer nanocomposite (FGN) plate is analyzed using finite element method (FEM). Stepwise gradient structure consisted of four different nanocomposite layers with 0, 5, 10 and 20 wt% of graphite. Thermal conductivity and specific heat capacity of the individual layers were determined using C-Therm TCi Thermal Conductivity Analyzer (Canada) in temperature range of -20 to 100 °C. Temperature history and temperature distribution across the thickness of the plate with two different configurations for two positive and negative temperature gradients are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quality of high pressure die castings is a function of many interdependent parameters. It has been observed that many defects detected in the HPDC castings can be tracked back to poor die temperature distribution in the critical areas. It has therefore been recommended that the development of a technique to directly control the critical features - making them less sensitive to thermal related parameters - be very beneficial to the HPDC industry. From the information obtained from thermal image (processing), computational fluid dynamics has been applied to design the layout of internal cooling system and assign the flow conditions such as flow rate and pressure of the cooling water. it is observed that CFD prediction provides an excellent insight into the thermal balance of the high pressure die casting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To improve the understanding of the heat transfer mechanism and to find a reliable and simple heat-transfer model, the gas flow and heat transfer between fluidized beds and the surfaces of an immersed object is numerically simulated based on a double particle-layer and porous medium model. The velocity field and temperature distribution of the gas and particles are analysed during the heat transfer process. The simulation shows that the change of gas velocity with the distance from immersed surface is consistent with the variation of bed voidage, and is used to validate approximately dimensional analysing result that the gas velocity between immersed surface and particles is 4.6Umf/εmf. The effects of particle size and particle residence time on the thermal penetration depth and the heat-transfer coefficients are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To improve the understanding of the heat transfer mechanism and find a reliable and simple heat-transfer model, the gas flow and heat transfer between fluidised beds and immersed object surfaces was numerically simulated based on a double particlelayer and porous medium model. The velocity field and temperature distribution of gas were discussed to analyse the heat transfer process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nose geometry of a hard and brittle metal cutting tool is generally modified in order to avoid the premature failure due to fracture under tensile stresses. While most research findings point to a favourable mechanical load pattern, the possible influence of the shape of the geometry on the thermal fields and the consequent changes in the stressed state of the tool seem to have attained less attention. The present work aims at establishing the thermal behaviour of bevelled tools under varying geometrical and process parameters. Data generated from statistically designed experiments and quick-stop chip samples are coupled to conduct numerical investigations using a mixed finite and boundary element solution to obtain the temperature distribution in bevelled carbide inserts. Due consideration is given to the presence of the stagnation zone and its size and shape. While the cutting forces and temperatures increased owing to the blunt shape of the tool, the possible absence of tensile stresses was found to be the likely effect of a more uniform temperature distribution resulting from a significant plastic contact on the principal flank and the consequent flank heat source. The characteristic low-temperature zones close to the nose of the conventional tool are taken over by the stagnation zone in bevelled tools. © IMechE 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical study of the natural-convection flow and heat transfer in a dome-shaped, heat-generating, porous enclosure is considered. The general conic equation for the top dome is used to consider various conical top sections such as circular, elliptical, parabolic, and hyperbolic. The individual effect of fluid Rayleigh, Darcy, and heat-generating parameters on flow patterns and heat transfer rates are analyzed and presented. The predicted results show that the heat-generating parameter has the most significant contribution toward the growth of bicellular core flow. Moreover, there is significant change in temperature distribution in comparison to rectangular enclosures, due to the existence of the domed-shape top adiabatic cover. The results also show that, regardless of Darcy and Rayleigh values, a flat adiabatic top cover tends to yield the highest value of Nusselt number, followed by circular, elliptical, parabolic, and hyperbolic top covers, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was conducted to develop an integrated process lethality model for pressure-assisted thermal processing (PATP) taking into consideration the lethal contribution of both pressure and heat on spore inactivation. Assuming that the momentary inactivation rate was dependent on the survival ratio and momentary pressure-thermal history, a differential equation was formulated and numerically solved using the Runge-Kutta method. Published data on combined pressure-heat inactivation of Bacillus amyloliquefaciens spores were used to obtain model kinetic parameters that considered both pressure and thermal effects. The model was experimentally validated under several process scenarios using a pilot-scale high-pressure food processor. Using first-order kinetics in the model resulted in the overestimation of log reduction compared to the experimental values. When the n th-order kinetics was used, the computed accumulated lethality and the log reduction values were found to be in reasonable agreement with the experimental data. Within the experimental conditions studied, spatial variation in process temperature resulted up to 3.5 log variation in survivors between the top and bottom of the carrier basket. The predicted log reduction of B. amyloliquefaciens spores in deionized water and carrot purée had satisfactory accuracy (1.07-1.12) and regression coefficients (0.83-0.92). The model was also able to predict log reductions obtained during a double-pulse treatment conducted using a pilot-scale high-pressure processor. The developed model can be a useful tool to examine the effect of combined pressure-thermal treatment on bacterial spore lethality and assess PATP microbial safety. © 2013 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a novel computational technique called Parameterized Perturbation Method (PPM) is used to obtain the solutions of nonlinear fundamental heat conduction equations. Three well known problems in the area of heat transfer are addressed to be solved. An analytical investigation is carried out for: (a) the temperature distribution in a fin with a temperature-dependent thermal conductivity, (b) the cooling of the lumped system with variable specific heat, and (c) the temperature distribution of a convective-radiative fin. The validity of the results of PPM solution was verified via comparison with numerical results obtained using a fourth order Runge-Kutta method. These comparisons revealed that PPM is a powerful approach for solving these problems. Also, the results showed that the main attributions of this method are very straightforward calculations and low computational burden compared to previous analytical and numerical approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study to assess distribution, numbers and habitat of the Rufous Bristlebird was conducted during 1997 and 1998 along the coast at Aireys Inlet, Victoria. Monthly surveys were conducted along selected pathways for 1 h at sunrise, noon and late afternoon. Birds were recorded on the basis of sightings and calls; 75% of records were from calls. The number of records of birds for April–June was significantly lower than for January–March, July–September and October–December. There was no difference in frequency of records due to weather conditions (clear, overcast or rain), presence of wind or difference in temperature. The Rufous Bristlebird inhabited remnant coastal vegetation, but also utilised nearby house gardens and road verges. Birds appeared to occupy distinct territories, with each separate territory occuring along a narrow strip of land on the coastal cliffs. The number of territories identified ranged from 14 to 33. Territories were occupied predominantly by pairs of birds. The minimum number of birds present was estimated for each survey session and ranged from 2 to 34. A conservative estimate of the bristlebird population in the area, based on the assumption that a territory was occupied by a pair, was thus between 28 and 66. A number of threats to the Rufous Bristlebird were identified in the study area including loss and fragmentation of habitat from housing developments and walking tracks. Introduced predators including foxes, cats and rats have been recorded, but their impact is unknown. The effect of people walking along the tracks and the presence of dogs is unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the austenite grain size (AGS) for hot bar rolling of AISI4135 steel was predicted based on two different AGS evolution models available in the literature. In order to predict the AGS more accurately, both models were integrated with a three-dimensional non-isothermal finite element program by implementing a modified additivity rule. The predicted results based on two models for the square-diamond (S-D) and round-oval (R-O) pass bar rolling processes were compared with the experimental data available in the literature. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to compare both models and investigate the effect of these parameters on the AGS distributions. Such numerical results were found to be beneficial to understand the effect of the microstructure evolution model on the rolling processes better and control the processes more accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex multiphase microstructures were obtained in transformation induced plasticity C–Mn–Si–(Nb–Al–Mo) steels by simulated controlled thermomechanical processing. These microstructures were characterized using transmission electron microscopy, X-ray diffraction and three-dimensional atom probe tomography (APT), which was used to determine the partitioning of elements between different phases and microconstituents. The measured carbon concentration (not, vert, similar0.25 at%) in the ferrite of carbide-free bainite was higher than expected from para-equilibrium between the austenite and ferrite, while the concentrations of substitutional elements were the same as in the parent austenite suggesting that incomplete bainite transformation occurred. In contrast, the distribution of substitutional elements between the ferrite lath and austenite in carbide-containing bainite indicated a complete bainite reaction. The average carbon content in the retained austenite (3.2 ± 1.6 at%) was somewhat higher than the T0 limit. On the basis of the APT measured composition, the calculated Ms temperatures for retained austenite were above room temperature, indicating its low chemical stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present water treatment and distribution is of high priority to ensure that communities have access to safe and affordable drinking water. Current information states that in the United States a total annual cost of $36 billion (US) is spent replacing aging infrastructure, lost water from unaccounted-for leaks, corrosion inhibitors, internal mortar linings, external coatings, and cathodic protection as a result of corrosion. In order to reduce the cost incurred as a result of corrosion in the water distribution industry, it is essential that better corrosion management and preventative strategies are implemented. However through investigation of research previously undertaken by others, it was found that there was a lack of study of corrosion within distribution systems in the tropics taking into account the related seasonal temperature variations. To assist in the development of management strategies to improve the outcomes of drinking water distribution systems, the authors propose to implement a pilot study involving the installation of a corrosion reactor based on standard corrosion assessment technologies in a water distribution system located in the tropics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drinking water quality guidelines are becoming increasingly stringent. To comply with these guidelines and to manage water quality in a distribution system, improved understanding of the movement and fate of drinking water constituents within the system is required. This study illustrates the construction and calibration of an electronic model of the Townsville drinking water distribution system. Being in the tropics, the temperature of the water in the distribution system changes little throughout the year (usually between 20 and 25°C); also, water is supplied to the system from two sources, the location of the blending of these waters is varies with demand.