19 resultados para tDCS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:
The objective of this study was to assess the effect of anodal transcranial direct current stimulation (a-tDCS) on voluntary dynamic strength and cortical plasticity when applied during a 3-wk strength training program for the wrist extensors.

Methods:
Thirty right-handed participants were randomly allocated to the tDCS, sham, or control group. The tDCS and sham group underwent 3 wk of heavy-load strength training of the right wrist extensors, with 20 min of a-tDCS (2 mA) or sham tDCS applied during training (double blinded). Outcome measures included voluntary dynamic wrist extension strength, muscle thickness, corticospinal excitability, short-interval intracortical inhibition (SICI), and silent period duration.

Results:
Maximal voluntary strength increased in both the tDCS and sham groups (14.89% and 11.17%, respectively, both P < 0.001). There was no difference in strength gain between the two groups (P = 0.229) and no change in muscle thickness (P = 0.15). The tDCS group demonstrated an increase in motor-evoked potential amplitude at 15%, 20%, and 25% above active motor threshold, which was accompanied by a decrease in SICI during 50% maximal voluntary isometric contraction and 20% maximal voluntary isometric contraction (all P < 0.05). Silent period decreased for both the tDCS and sham groups (P < 0.001).

Conclusion:
The application of a-tDCS in combination with strength training of the wrist extensors in a healthy population did not provide additional benefit for voluntary dynamic strength gains when compared with standard strength training. However, strength training with a-tDCS appears to differentially modulate cortical plasticity via increases in corticospinal excitability and decreases in SICI, which did not occur following strength training alone

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence suggests that the cross-transfer of strength following unilateral training may be modulated by increased corticospinal excitability of the ipsilateral primary motor cortex, due to cross-activation. Anodal-tDCS (a-tDCS) has been shown to acutely increase corticospinal excitability and motor performance, which may enhance this process. Therefore, we sought to examine changes in neural activation and strength of the untrained limb following the application of a-tDCS during a single unilateral strength training session. Ten participants underwent three conditions in a randomized, double-blinded crossover design: (1) strength training + a-tDCS, (2) strength training + sham-tDCS and (3) a-tDCS alone. a-tDCS was applied for 20 min at 2 mA over the right motor cortex. Unilateral strength training of the right wrist involved 4 × 6 wrist extensions at 70 % of maximum. Outcome measures included maximal voluntary strength, corticospinal excitability, short-interval intracortical inhibition, and cross-activation. We observed a significant increase in strength of the untrained wrist (5.27 %), a decrease in short-interval intracortical inhibition (−13.49 %), and an increase in cross-activation (15.71 %) when strength training was performed with a-tDCS, but not following strength training with sham-tDCS, or tDCS alone. Corticospinal excitability of the untrained wrist increased significantly following both strength training with a-tDCS (17.29 %), and a-tDCS alone (15.15 %), but not following strength training with sham-tDCS. These findings suggest that a single session of a-tDCS combined with unilateral strength training of the right limb increases maximal strength and cross-activation to the contralateral untrained limb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the efficacy of applying anodal transcranial direct current stimulation (a-tDCS) to the ipsilateral motor cortex (iM1) during unilateral strength training to enhance the neurophysiological and functional effects of cross-education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Age-related neurodegeneration may interfere with the ability to respond to cross-limb transfer, whereby bilateral performance improvements accompany unilateral practice. We investigated whether transcranial direct current stimulation (tDCS) would facilitate this phenomena in older adults. METHODS: 12 young and 12 older adults underwent unilateral visuomotor tracking (VT), with anodal or sham-tDCS over the ipsilateral motor cortex. Transcranial magnetic stimulation (TMS) assessed motor evoked potentials (MEPs) and short interval intracortical inhibition (SICI). Performance was quantified through a VT error. Variables were assessed bilaterally at baseline and post-intervention. RESULTS: The trained limb improved performance, facilitated MEPs and released SICI in both age groups. In the untrained limb, VT improved in young for both sham and anodal-tDCS conditions, but only following anodal-tDCS for the older adults. MEPs increased in all conditions, except the older adult's receiving sham. SICI was released in both tDCS conditions for young and old. CONCLUSION: Following a VT task, older adults still display use-dependent plasticity. Although no significant age-related differences between the outcome measures, older adults exhibited significant cross-limb transfer of performance following anodal-tDCS, which was otherwise absent following motor practice alone. SIGNIFICANCE: These findings provide clinical implications for conditions restricting the use of one limb, such as stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Single sessions of bihemispheric transcranial direct-current stimulation (bihemispheric-tDCS) with concurrent rehabilitation improves motor function in stroke survivors, which outlasts the stimulation period. However few studies have investigated the behavioral and neurophysiological adaptations following a multi-session intervention of bihemispheric-tDCS concurrent with rehabilitation. Objective: This pilot study explored the immediate and lasting effects of 3-weeks of bihemispheric-tDCS and upper limb (UL) rehabilitation on motor function and corticospinal plasticity in chronic stroke survivors. Methods: Fifteen chronic stroke survivors underwent 3-weeks of UL rehabilitation with sham or real bihemispheric-tDCS. UL motor function was assessed via the Motor Assessment Scale (MAS), Tardieu Scale and grip strength. Corticospinal plasticity was indexed by motor evoked potentials (MEPs), cortical silent period (CSP) and short-interval intracortical inhibition (SICI) recorded from the paretic and non-paretic ULs, using transcranial magnetic stimulation (TMS). Measures were taken at baseline, 48 h post and 3-weeks following (follow-up) the intervention. Results: MAS improved following both real-tDCS (62%) and sham-tDCS (43%, P < 0.001), however at 3-weeks follow-up, the real-tDCS condition retained these newly regained motor skills to a greater degree than sham-tDCS (real-tDCS 64%, sham-tDCS 21%, P = 0.002). MEP amplitudes from the paretic UL increased for real-tDCS (46%: P < 0.001) and were maintained at 3-weeks follow-up (38%: P = 0.03), whereas no changes were observed with sham-tDCS. No changes in MEPs from the non-paretic nor SICI from the paretic UL were observed for either group. SICI from the non-paretic UL was greater at follow-up, for real-tDCS (27%: P = 0.04). CSP from the non-paretic UL increased by 33% following the intervention for real-tDCS compared with sham-tDCS (P = 0.04), which was maintained at 3-weeks follow-up (24%: P = 0.04). Conclusion: bihemispheric-tDCS improved retention of gains in motor function, which appears to be modulated through intracortical inhibitory pathways in the contralesional primary motor cortex (M1). The findings provide preliminary evidence for the benefits of bihemispheric-tDCS during rehabilitation. Larger clinical trials are warranted to examine long term benefits of bihemispheric-tDCS in a stroke affected population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research is being conducted on the use of transcranial direct current stimulation (tDCS) for therapeutic effects, and also on the mechanisms through which such therapeutic effects are mediated. A bottleneck in the progress of the research has been the large size of the existing tDCS systems which prevents subjects from performing their daily activities. To help research into the principles, mechanisms, and benefits of tDCS, reduction of size and weight, improvement in simplicity and user friendliness, portability, and programmability of tDCS systems are vital. This paper presents a design for a low-cost, light-weight, programmable, and portable tDCS device. The device is head-mountable and can be concealed in a hat and worn on the head by the subject while receiving the stimulation. The strength of the direct current stimulation can be selected through a simple user interface. The device is constructed and its performance evaluated through bench and in vivo tests. The tests validated the operation of the device in inducing neuromodulatory changes in primary motor cortex, M1, through measuring excitability of dominant M1 of resting right first dorsal interosseus muscle by transcranial magnetic stimulation induced motor evoked potentials. It was observed that the tDCS device induced comparable neuromodulatory effects in M1 as the existing bulky tDCS systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability.
 
Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one session of a-tDCS (1mA current) with shorter (10 min) and longer (10+10 min) stimulation durations applied to the left M1 of extensor carpi radialis muscle (ECR). Corticomotor excitability following application of a-tDCS was assessed at rest with transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEP) and compared with baseline data for each participant.
 
Results: MEP amplitudes were increased following 10 min of a-tDCS by 67% (p = 0.001) with a further increase (32%) after the second 10 min of a-tDCS (p = 0.005). MEP amplitudes remained elevated at 15 min post stimulation compared to baseline values by 65% (p = 0.02).
 
Discussion: The results demonstrate that longer application of a-tDCS within the recommended safety limits, increases corticomotor excitability with after effects of up to 15 minutes post stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imaging and lesion studies have suggested numerous roles for the temporoparietal junction (TPJ), for example in attention and neglect, social cognition, and self/other processing. These studies cannot establish causal relationships, and the importance and relevance of (and interrelationships between) proposed roles remain controversial. This review examined studies that use noninvasive transcranial stimulation (NTS) to explore TPJ function. Of 459 studies identified, 40 met selection criteria. The strengths and weaknesses of NTS-relevant parameters used are discussed, and methodological improvements suggested. These include the need for careful selection of stimulation sites and experimental tasks, and use of neuronavigation and concurrent functional activity measures. Without such improvements, overlapping and discrete functions of the TPJ will be difficult to disentangle. Nevertheless, the contributions of these studies to theoretical models of TPJ function are discussed, and the clinical relevance of TPJ stimulation explored. Some evidence exists for TPJ stimulation in the treatment of auditory hallucinations, tinnitus, and depersonalisation disorder. Further examination of the TPJ in conditions such as autism spectrum disorder is also warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the efficacy and effects of transcranial direct current stimulation (tDCS) on motor imagery brain-computer interface (MI-BCI) with robotic feedback for stroke rehabilitation. DESIGN: A sham-controlled, randomized controlled trial. SETTING: Patients recruited through a hospital stroke rehabilitation program. PARTICIPANTS: Subjects (N=19) who incurred a stroke 0.8 to 4.3 years prior, with moderate to severe upper extremity functional impairment, and passed BCI screening. INTERVENTIONS: Ten sessions of 20 minutes of tDCS or sham before 1 hour of MI-BCI with robotic feedback upper limb stroke rehabilitation for 2 weeks. Each rehabilitation session comprised 8 minutes of evaluation and 1 hour of therapy. MAIN OUTCOME MEASURES: Upper extremity Fugl-Meyer Motor Assessment (FMMA) scores measured end-intervention at week 2 and follow-up at week 4, online BCI accuracies from the evaluation part, and laterality coefficients of the electroencephalogram (EEG) from the therapy part of the 10 rehabilitation sessions. RESULTS: FMMA score improved in both groups at week 4, but no intergroup differences were found at any time points. Online accuracies of the evaluation part from the tDCS group were significantly higher than those from the sham group. The EEG laterality coefficients from the therapy part of the tDCS group were significantly higher than those of the sham group. CONCLUSIONS: The results suggest a role for tDCS in facilitating motor imagery in stroke.