5 resultados para surface crystallization

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermosetting polymer blends of poly(ethylene oxide) (PEO) and bisphenol-A-type epoxy resin (ER) were prepared using 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) as curing agent. The miscibility and crystallization behavior of MCDEA-cured ER/PEO blends were investigated by differential scanning calorimetry (DSC). The existence of a single composition-dependent glass transition temperature (Tg) indicates that PEO is completely miscible with MCDEA-cured ER in the melt and in the amorphous state over the entire composition range. Fourier-transform infrared (FTIR) investigations indicated hydrogen-bonding interaction between the hydroxyl groups of MCDEA-cured ER and the ether oxygens of PEO in the blends, which is an important driving force for the miscibility of the blends. The average strength of the hydrogen bond in the cured ER/PEO blends is higher than in the pure MCDEA-cured ER. Crystallization kinetics of PEO from the melt is strongly influenced by the blend composition and the crystallization temperature. At high conversion, the time dependence of the relative degree of crystallinity deviated from the Avrami equation. The addition of a non-crystallizable ER component into PEO causes a depression of both the overall crystallization rate and the melting temperature. The surface free energy of folding σe displays a minimum with variation of composition. The spherulitic morphology of PEO in the ER/PEO blends exhibits typical characteristics of miscible crystalline/amorphous blends, and the PEO spherulites in the blends are always completely volume-filling. Real-time small-angle X-ray scattering (SAXS) experiments reveal that the long period L increases drastically with increasing ER content at the same temperatures. The amorphous cured ER component segregates interlamellarly during the crystallization process of PEO because of the low chain mobility of the cured ER. A model describing the semicrystalline morphology of MCDEA-cured ER/PEO blends is proposed based on the SAXS results. The semicrystalline morphology is a stack of crystalline lamellae; the amorphous fraction of PEO, the branched ER chains and imperfect ER network are located between PEO lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stereocomplexation of stereoregular PMMA at the air/water interface was proved by structure determination using reflection-absorption IR and grazing incidence X-ray diffraction. Morphological studies on LB films of i- and s-PMMA blends with different ratios help to disclose the stereocomplexation process of stereoregular PMMA at the air/water interface. It was found that the stereocomplexes exist in particle aggregates randomly dispersed at the air/water interface. In the systems with the i:s ratio deviated from 1:2, the molecules, either i-PMMA or s-PMMA, that do not participate in the stereocomplexation build separate layer surrounding the stereocomplexes. This layer is much thinner than the particle aggregates of the stereocomplexes. If the i-PMMA molecules are rich in this thinner layer, crystallization of i-PMMA takes place, which generates lamellar structure besides the stereocomplexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melt crystallization of poly(vinyl alcohol) (PVA) and PVA composites has been a controversial subject due to inconclusive evidence and different opinions for its decomposition during crystallization. Using graphene as a model, the melt crystallization of PVA and PVA-graphene composites occurring during single-cycle and multiple-cycle non-isothermal annealing processes was systematically analyzed using different characterization techniques. The results obtained using single-cycle non-isothermal annealing indicated that the entire crystallization process took place through two main stages. The graphene in the PVA matrix regulates the nucleation and crystal growth manner of the PVA, yet resulting in retardation of the entire crystallization. The FTIR and Raman spectroscopic results particularly demonstrated that the annealing process not only improved the crystallinity but also led to clear decomposition in PVA and PVA-graphene composites, such as the elimination of hydroxyl groups and the production of C=C double bonds. The newly produced C=C double bonds were found to be responsible for the retardation of PVA macromolecule crystallization and the breaking of hydrogen bonds among the hydroxyl groups in the PVA chains. In addition, the morphological observation and multi-cycle non-isothermal crystallization further confirmed the existence of decomposition based on the surface damage as well as decreased crystallization enthalpy and crystallization peak temperature. Therefore, the non-isothermal crystallizations of the pure PVA and the PVA-graphene composites were in fact the combination of non-isothermal crystallization and non-isothermal degradation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the crystallization rates and spherulitic growth rate of miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were determined using differential scanning calorimetry (DSC), real-time FTIR, and optical microscopy. FTIR results suggest that blending does not induce the creation of polymorphic crystalline forms of PVDF. SAXS data demonstrate the formation of interlamellar structure after blending. The fold surface-free energy (σ e) was analyzed and compared using different thermal analysis techniques. The isothermal crystallization curves obtained using real-time FTIR and DSC explored in two different methods: t 1/2 or Avrami equation. While the Avrami equation is more widespread and precise, both analytical methods gave similar free energy of folding values. However, it was found that the direct optical method of measuring spherulitic growth rate yields σ e values 30-50 % lower than those obtained from the overall crystallization rate data. Conversely, the σ e values were found to increase with increasing amorphous ACM phase content regardless of the analytical methods.