11 resultados para subtropical climate

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy crisis is one of the major obstacles for human development. There are on-going researches to overcome this for a sustainable environment and economy. Passive air cooling system of earth pipe cooling is seen as a viable energy efficient technology for hot and humid subtropical climates. It can be an attractive economical alternative to conventional cooling since there are no compressors or any habitual mechanical unit. It utilizes earth’s near constant underground temperature to cool air for residential, agricultural or industrial uses. This paper reports the thermal performance of earth pipe cooling technology for a hot and humid subtropical climatic zone in Queensland, Australia. A series of pipes buried underground were used in order to increase the cooling performance of the system. To measure the thermal performance, a thermal model was developed for the earth pipe cooling system and simulated using ANSYS Fluent. Data were collected from two modelled rooms built from shipping containers and installed at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A significant temperature reduction is seen in this study, which will save energy cost for thermal cooling in buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Passive cooling system has become an attractive option to design and modify homes to achieve thermal comfort. The system provides cooling through the use of passive processes, which often use heat flow paths that do not exist in conventional or bioclimatic buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy consumption in heating and cooling around the world has been a major contributor to global warming. Hence, many studies have been aimed at finding new techniques to save and control energy through energy efficient measures. Most of this energy is used in residential, agricultural and commercial buildings. It is therefore important to adopt energy efficiency measures in these buildings through new technologies and novel building designs. These new building designs can be developed by employing various passive cooling systems. Earth pipe cooling is one of these which can assist to save energy without using any customary mechanical units. This paper investigates the earth pipe cooling performance in a hot humid subtropical climate of Rockhampton, Australia. A thermal model is developed using ANSYS Fluent for measuring its performance. Impacts of air velocity, air temperature, relative humidity and soil temperature on room cooling performance are also assessed. A temperature reduction of around 2 °C was found for the system. This temperature reduction contributed to an energy saving of a maximum of 866.54 kW (8.82%) per year for a 27.23 m3 room.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy crisis is one of the major problems facing the progress of human society. There are several energy-efficient technologies that can be applied to save energy and make a sustainable environment. Passive air cooling of earth pipe cooling technology is one of them to reduce the energy consumption for hot and humid subtropical climates. The technology works with a long buried pipe with one end for intake air and the other end for providing air cooled by soil to the desired space such as residential, agricultural, or industrial buildings. It can be an attractive economical alternative to conventional cooling since there are no compressors or any customary mechanical unit. This chapter reports the performance of a vertical earth pipe cooling system for a hot and humid subtropical climatic zone in Queensland, Australia. A series of buried pipes were installed in vertical arrangement in order to increase earth pipe cooling performance. To measure the performance of the system, a numerical model was developed and simulated using the CFD software Fluent in ANSYS 15.0. Data were collected from two modeled rooms built from two shipping containers and installed at the Sustainable Precinct at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A temperature reduction of 1.82 °C was observed in the room connected to the vertical earth pipe cooling system, which will save the energy cost for thermal cooling in buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the original version of this article (Ahmed et al. 2014), the authors noted that the author list was published with errors. The correct author list can be found in this erratum. The publisher would like to apologise to the authors for this error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advancement in solar photovoltaic (PV) technology, the cost and efficiency of PVs have encouraged users worldwide to adopt more and more PVs as it is free from greenhouse gas emissions and unlimited in nature. Integration of roof-top solar PV systems is currently emerging rapidly in Australia as the governments are giving attractive incentives and encouraging households to build a sustainable climate-friendly society for the future. The key major barriers to the integration of roof-top solar PV systems are the uncertainties in the performance of the low voltage distribution network due to the intermittent nature of solar PV sources. In this paper, a model was developed to investigate the potential technical impacts of integrating roof-top solar PV systems into the low voltage distribution network in a subtropical climate. The results show that integration of roof-top solar PV in the customer premises causes uncertainties such as voltage fluctuations, phase unbalance, distribution transformer overloading, reactive power compensation, and harmonic injections that detract the overall power quality of the typical distribution network. © 2014 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rational use of energy and its associated greenhouse gas emissions has become a key issue for a sustainable environment and economy. A substantial amount of energy is consumed by today's buildings which are accountable for about 40% of the global energy consumption. There are on-going researches in order to overcome these and find new techniques through energy efficient measures. Passive air cooling of earth pipe cooling technique is one of those which can save energy in buildings with no greenhouse gas emissions. The performance of the earth pipe cooling system is mainly affected by the parameters, namely air velocity, pipe length, pipe diameter, pipe material, and pipe depth. This paper investigates the impact of these parameters on thermal performance of the horizontal earth pipe cooling system in a hot humid subtropical climate at Rockhampton, Australia. For the parametric investigation, a thermal model was developed for the horizontal earth pipe cooling system using the simulation program, FLUENT 15.0. Results showed a significant effect for air velocity, pipe length, and pipe diameter on the earth pipe cooling performance, where the pipe length dominated the other parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency of a building has become a major requirement since the building sector produces 40%-50% of the global greenhouse gas emissions. This can be achieved by improving building’s performance through energy savings, by adopting energy efficient technologies and reducing CO2 emissions. There exist several technologies with less or no environmental impact that can be used to reduce energy consumption of the buildings. Earth pipe cooling system is one of them, which works with a long buried pipe with one end for intake air and the other end for providing air cooled by soil to the building. It is an approach for cooling a room in a passive process without using any habitual mechanical unit. The paper investigates the thermal performance of a horizontal earth pipe cooling system in a hot and humid subtropical climatic zone in Queensland, Australia. An integrated numerical model for the horizontal earth pipe cooling system and the room (or building) was developed using ANSYS Fluent to measure the thermal performance of the system. The impact of air temperature, soil temperature, air velocity and relative humidity on room cooling performance has also been assessed. As the soil temperature was below the outdoor minimum temperature during the peak warming hours of the day, it worked as an effective heat sink to cool the room. Both experimental and numerical results showed a temperature reduction of 1.11oC in the room utilizing horizontal earth pipe cooling system which will assist to save the energy cost in the buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.