18 resultados para stacking faults

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A key requirement of modern steels – the combination of high strength and high deformability – can best be achieved by enabling a local adaptation of the microstructure during deformation. A local hardening is most efficiently obtained by a modification of the stacking sequence of atomic layers, resulting in the formation of twins or martensite. Combining ab initio calculations with in situ transmission electron microscopy, we show that the ability of a material to incorporate such stacking faults depends on its overall chemical composition and, importantly, the local composition near the defect, which is controlled by nanodiffusion. Specifically, the role of carbon for the stacking fault energy in high-Mn steels is investigated. Consequences for the long-term mechanical properties and the characterisation of these materials are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report an previous termunusualnext term morphology of ZnO previous termnanowiresnext term with a hexagonal cross-section and previous termcorrugatednext term side walls. previous termNanowiresnext term grow along the [0 0 0 1] direction and possess side walls built predominantly with facets of {1 0 1¯ 1} and {1 0 1¯ 1¯} families. Such a morphology deviates dramatically from the well-known growth habit of ZnO previous termnanowiresnext term that involves smooth side walls represented by {1 0 1¯ 0} or {1 1 2¯ 0} facets with the lowest surface energy. The formation of previous termcorrugated nanowiresnext term is attributed to the lateral growth activated by the high vapor supersaturation and the presence of stacking faults.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of cold rolling and annealing on the shape memory effect (SME) in an Fe–Mn–Si-based alloy has been studied. It has been found
that the SME in these alloys can be significantly increased by the appropriate thermo-mechanical processing (TMP). The optimum conditions
were found to be 15% cold rolling followed by annealing at 800 ◦C for 15 min. This produced a total strain recovery of 4.5%. TEM showed that
this processing schedule produces a microstructure of evenly spaced, and well defined stacking faults throughout the parent phase. It is shown for
the first time that samples processed in this way produce a larger fraction of martensite compared to samples in the as-austenitized condition. It
is concluded that the stacking faults induced by TMP act as nucleation sites for martensite formation during deformation. The SME is improved
primarily as a result of the increased amount of martensite that is formed in this condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The severe plastic deformation of a Twinning Induced Plasticity (TWIP), 0.61C-22.3Mn-0.19Si-0.14Ni-0.27Cr (wt. %) steel by Equal Channel Angular Pressing (ECAP) at elevated temperatures was used to study the deformation mechanism as a function of accumulated strain and processing parameters. The relationship between the microstructures after different deformation schedules of ECAP at the temperatures of 200, 300 and 400oC, strain hardening behavior and mechanical properties was studied. The best balance between strength and ductility (1702 MPa and 24%) was found after 2 passes at 400oC and 300oC of ECAP. It was due to the formation of deformation microbands and twins in the microstructure. The twinning was observed after all deformation schedules except after 1 pass at 400oC. The important finding was the formation of twins in the ultrafine grains. Moreover, the stacking faults were observed in the subgrains with the size of 50nm. It is also worth mentioning the formation of nano- twins within the micro-twins at the same time. It was found that the deformation schedule affects the dislocation substructure with formation of deformation bands, cells, subgrains, two variants of twins that, in turn, influence the strain-hardening behavior and mechanical properties. Keywords: Twinning Induced Plasticity steels; Equal Channel Angular Pressing; mechanical properties; transmission electron microscopy; micro/nano twins; dislocation substructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current study, the work-hardening behaviour of a high manganese TWIP steel was investigated at different deformation temperatures. At room temperature, the steel exhibited an excellent combination of mechanical properties due to a unique work-hardening behaviour. There were four distinct stages observed in the work-hardening behaviour as a result of complex dynamic strain induced microstructural reactions consisted of dynamic recovery, dislocation dissociation, stacking fault formation, mechanical twining and dynamic strain aging. An increase in the deformation temperature significantly influenced the microstructure evolution, resulting in a remarkable alteration in the work-hardening behaviour. Consequently, the mechanical properties of the TWIP steel were gradually deteriorated with the deformation temperature. The mechanical twins appeared to have a restricted influence on the work-hardening behaviour of the TWIP steel at room temperature and remarkably diminished with the temperature. The enhanced work-hardening behaviour was mostly attributed to the interaction of glide dislocations with stacking faults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented is an examination of residential building faults in the Australian Slate of Victoria. The aim is to determine the interconnections between identified main house faults., with a view to establishing their cause· effect relationships. A total of 42753 residential houses in Victoria were examined for nine key faults fully documented in Archicentre's database. These faults are: rising damp. framing fault, illegal building, stump fault, timber rot, cracking, electrical fault, roof fault and water supply issue. Second to framing fault, roof fault was found to be closely associated with other house faults examined. Hence, this paper concludes that a properly framed and roofed house could limit most of these faults. As illegal building was observed to have only a little overall association with other house faults, this study has implications for the Australia Productivity Commission's on-going efforts to deregulate various aspects of the building and construction industry professions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsymmetrical1y substituted diorganotellurium dihalides [2-(4,4'-N02C6H4CHNC6H3Me]RTeX2 (R = 4-MeOC6H4, X = Cl,
1a; Br, 1b; I, 1c; R =4-MeC6H4 ; X = Cl, 2; R =C6H5, X = Cl, 3) were prepared in good yields and characterized by solution and solid-state 125Te NMR spectroscopy, IR spectroscopy and X-ray crystallography. In the solid-state, molecular structures of 1a and 1c possess scarcely observed 1,4-type intramolecular Te···N secondary interaction. Crystal packing of these compounds show an unusually rich diversity of intermolecular secondary, Te·· ·0, Te· .. \ and 1···1 interactions, Te·· ·π contacts as well as extensive
π-stacking of the organic substituents.