14 resultados para spinneret

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrated electric field is crucial in generation of needleless electrospinning; the electric field profile together with electric field intensity of the spinneret directly affect the needleless electrospinning performance. Understanding the electric field of different spinnerets would definitely benefit the design and optimization of needleless electrospinning. Three-dimensional (3D) finite element analysis has been used to analyze the electric field profile and electric field intensity of different spinnerets for needleless electrospinning by using the simulation software COMSOL Multiphysics 3.5a. It has been found that evolution of the spinneret of needleless electrospinning from cylinder to multiple disks and then to multiple rings results in stronger and more concentrated electric field. The analysis based on 3D simulation of the electric field could benefit further development of needleless electrospinning in which the production rate and quality of as-spun nanofibers are of great importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we have demonstrated a novel needleless electrospinning of PVA nanofibers by using a conical metal wire-coil as spinneret. Multiple polymer jets were observed to generate on the coil surface. Up to 70 kV electric voltage can be applied to this needleless electrospinning nozzle without causing corona discharge. Compared with conventional needle electrospinning, this needleless electrospinning system produced finer nanofibers on a much larger scale, and the fiber processing ability showed a much greater dependence on the applied voltage. Finite element calculation indicates that the electric field intensity profiles for the two systems are also quite different. This novel concept of using wire coil as the electrospinning nozzle will contribute to the further development of new large-scale needleless electrospinning system for nanofiber production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fibre generator shape and dimension are key factors affecting the needleless electrospinning process and fibre fineness. In this work, cylinder with rounded rim, disc and ball were used as spinnerets to electrospin polyvinyl alcohol and polyacrylonitrile solutions. A finite element method was used to analyse how the spinneret geometry affected the electric field generated during electrospinning and the associated changes in fibre diameter and productivity. For cylinder spinnerets, increasing the rim radius reduced the discrepancy of electric field intensity between the cylinder end and middle area, which affected the fibre productivity. The electrospinning failed to operate when the rim radius was over 20 mm. With decreasing cylinder diameter, the electric field intensity in the middle area increased, improving the fibre productivity. Thinner disc spinnerets increased the electric field intensity, resulting in finer nanofibres and higher productivities. Ball spinnerets produced evenly distributed electric field, but failed to electrospin fibres when the diameters were below 60 mm. It has been found that strong and narrowly distributed electric field in the fibre-generating area can significantly facilitate the mass production of quality nanofibres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional electrospinning often uses a needle-like nozzle to produce nanofibers with a very low production rate. Despite the enormous application potential, needle electrospun nanofibers meet difficulties in broad applications in practice, due to the lack of an economic and efficient way to scale up the electrospinning process. Recently, needleless electrospinning has emerged as a new electrospinning mode and shown ability to produce nanofibers on large-scales. It has been established that the fiber generator, also referred to as “spinneret” in this paper, in needleless electrospinning plays a key role in scaling up the nanofiber production. This paper summarizes the recent advances in the development of needleless spinnerets and their influences on electrospinning process, nanofiber quality, and productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyacrylonitrile (PAN) nanofibers were prepared by a needleless electrospinning method using three rotating fiber generators, cylinder, disc and coil. The effects of the spinneret shape on the electrospinning process and resultant fiber morphology were examined. The disc spinneret needed the lowest voltage to initiate fiber formation, followed by the coil and cylinder. Compared to cylinder, the disc and coil produced finer fibers with narrower diameter distribution. The productivity of a coil was 23 g/hr, which was much larger than that of the cylinder spinneret having the same length and diameter. Finite elementary method was used to analyze the electric field. Stronger electric field was found to be formed on disc and coil surface, which concentrated on the disc circumferential edge and coil wire surface, respectively. For cylinder, the high intensity electric field was mainly concentrated on the end area. Concentrated electric field on the fiber generating surface could be used to explain the better electrospinning performance of coil, which may form a new concept for designing needleless electrospinning spinnerets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyvinyl alcohol nanofibers were prepared by a needleless electrospinning technique using a rotating spiral wire coil as spinneret. The influences of coil dimension (e.g., coil length, coil diameter, spiral distance, and wire diameter) and operating parameters (e.g., applied voltage and spinning distance) on electrospinning process, nanofiber diameter, and fiber productivity were examined. It was found that the coil dimension had a considerable influence on the nanofiber production rate, but minor effect on the fiber diameter. The fiber production rate increased with the increased coil length or coil diameter, or the reduced spiral distance or wire diameter. Higher applied voltage or shorter collecting distance also improved the fiber production rate but had little influence on the fiber diameter. Compared with the conventional needle electrospinning, the coil electrospinning produced finer fibers with a narrower diameter distribution. A finite element method was used to analyze the electric field on the coil surface and in electrospinning zone. It was revealed that the high electric field intensity was concentrated on the coil surface, and the intensity was highly dependent on the coil dimension, which can be used to explain the electrospinning performances of coils. In addition, PAN nanofibers were prepared using the same needleless electrospinning technique to verify the improvement in productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spinneret for producing nanofibres from a viscous liquid using electrostatic spinning in an electric field is described. The spinneret includes one or more narrow annular bodies radially centred about and axially spaced along a central axis. The annular bodies may be discs, rings, or coils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass production of nanofibers is crucial in both laboratory research and industry application of nanofibers. In this study, multiple ring spinnerets have been used to generate needleless electrospinning. Multiple polymer jets were produced from the top of each ring in the spinning process, resulting in thin and uniform nanofibers. Production rate of nanofibers increased gradually with the increase of the number of rings in the spinneret. Spinning performance of multiple ring electrospinning, namely the quality and production rate of the as-spun nanofibers, was dependent on experimental parameters like applied voltage and polymer concentration. Electric field analysis of multiple ring showed that high concentrated electric field was formed on the surface of each ring. Fiber diameter together with production rate of needleless electrospinning was dependent on the strength and distribution of the electric field of the spinneret. Needleless electrospinning from multiple ring can be further applied in both laboratory research and industry where large amount of nanofibers must be employed simultaneously. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass production of nanofibers from needleless electrospinning shows great potential in research and development of nanofibers. However, how to improve the electrospinning performance so as to achieve high quality nanofibers is still of great challenge. In this study, airflow has been applied to optimize upward needleless electrospinning from ring spinneret. Effects of airflow speed and the position of airflow on the nanofiber quality and production rate have been investigated. It has been found that thinner and more uniform nanofibers were produced when airflow was applied to needleless electrospinning system. It also improved the collected nonwoven membrane, resulting in better nanofibrous structure of the as-spun nanofibers. Application of airflow on needleless electrospinning would further benefit the development of mass production of nanofibers from needleless electrospinning.