7 resultados para species associations

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Animal movements may contribute to the spread of pathogens. In the case of avian influenza virus, [migratory] birds have been suggested to play a role in the spread of some highly pathogenic strains (e.g. H5N1, H5N8), as well as their low pathogenic precursors which circulate naturally in wild birds. For a better understanding of the emergence and spread of both highly pathogenic (HPAIV) and low pathogenic avian influenza virus (LPAIV), the potential effects of LPAIVs on bird movement need to be evaluated. In a key host species, the mallard Anas platyrhynchos, we tested whether LPAIV infection status affected daily local (< 100 m) and regional (> 100 m) movements by comparing movement behaviour 1) within individuals (captured and sampled at two time points) and 2) between individuals (captured and sampled at one time point). We fitted free-living adult males with GPS loggers throughout the autumn LPAIV infection peak, and sampled them for LPAIV infection at logger deployment and at logger removal on recapture. Within individuals, we found no association between LPAIV infection and daily local and regional movements. Among individuals, daily regional movements of LPAIV infected mallards in the last days of tracking were lower than those of non-infected birds. Moreover, these regional movements of LPAIV infected birds were additionally reduced by poor weather conditions (i.e. increased wind and/or precipitation and lower temperatures). Local movements of LPAIV infected birds in the first days of tracking were higher when temperature decreased. Our study thus demonstrates that bird-assisted dispersal rate of LPAIV may be lower on a regional scale than expected on the basis of the movement behaviour of non-infected birds. Our study underlines the importance of understanding the impact of pathogen infection on host movement in order to assess its potential role in the emergence and spread of infectious diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burrowing bivalves are associated with particular sediment types within sedimentary systems. The degree to which bivalve sediment associations are repeatable across systems has seldom been investigated. To investigate whether such repeatability exists across tidal flats, we compared adult and juvenile distributions of 3 bivalve species (Cerastoderma edule, Scrobicularia plana, Macoma balthica) across 6 European tidal flats. Across systems, the adult bivalves showed fairly repeatable distributions, with C. edule occurring in sandy sediments and M. balthica and S. plana occurring in muddy sediments. Exceptions were observed in systems composed primarily of muddy sediments (Aiguillon Bay and Marennes-Oléron Bay) and the Dutch Wadden Sea. Interestingly, juveniles and adults of C. edule and S. plana showed similar distributions across systems. M. balthica juveniles and adults showed habitat separation in 3 of the 6 studied systems; in 2 of these, it has been shown previously that juvenile M. balthica settle in mud at high tidal levels and migrate to lower sandier flats later in life. The high occurrence of juvenile M. balthica towards high sandy flats in Mont Saint-Michel Bay suggests that juveniles might choose high tidal flats rather than muddy sediments per se. A repeatable association in adults and juveniles with respect to sediment could suggest that juveniles actively settle in the proximity of the adults and/or that juveniles settling away from the adults incur a higher mortality due to either predation, physiological stress, or other factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis was motivated by the increasing role of species distribution models in managing marine fishes and their habitats. These models provided new information about fish-habitat associations. However, models are potentially influenced by fish behaviour towards underwater video systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A capacity to predict the effects of fire on biota is critical for conservation in fire-prone regions as it assists managers to anticipate the outcomes of different approaches to fire management. The task is complicated because species' responses to fire can vary geographically. This poses challenges, both for conceptual understanding of post-fire succession and fire management. We examine two hypotheses for why species may display geographically varying responses to fire. 1) Species' post-fire responses are driven by vegetation structure, but vegetation - fire relationships vary spatially (the 'dynamic vegetation' hypothesis). 2) Regional variation in ecological conditions leads species to select different post-fire ages as habitat (the 'dynamic habitat' hypothesis). Our case study uses data on lizards at 280 sites in a ~ 100 000 km2 region of south-eastern Australia. We compared the predictive capacity of models based on 1) habitat associations, with models based on 2) fire history and vegetation type, and 3) fire history alone, for four species of lizards. Habitat association models generally out-performed fire history models in terms of predictive capacity. For two species, habitat association models provided good discrimination capacity even though the species showed geographically varying post-fire responses. Our results support the dynamic vegetation hypothesis, that spatial variation in relationships between fire and vegetation structure results in regional variation in fauna-fire relationships. These observations explain how the widely recognised 'habitat accommodation' model of animal succession can be conceptually accurate yet predictively weak. © 2014 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Aim: The purpose of this study was to create predictive species distribution models (SDMs) for temperate reef-associated fish species densities and fish assemblage diversity and richness to aid in marine conservation and spatial planning. Location: California, USA. Methods: Using generalized additive models, we associated fish species densities and assemblage characteristics with seafloor structure, giant kelp biomass and wave climate and used these associations to predict the distribution and assemblage structure across the study area. We tested the accuracy of these predicted extrapolations using an independent data set. The SDMs were also used to estimate larger scale abundances to compare with other estimates of species abundance (uniform density extrapolation over rocky reef and density extrapolations taking into account variations in geomorphic structure). Results: The SDMs successfully modelled the species-habitat relationships of seven rocky reef-associated fish species and showed that species' densities differed in their relationships with environmental variables. The predictive accuracy of the SDMs ranged from 0.26 to 0.60 (Pearson's r correlation between observed and predicted density values). The SDMs created for the fish assemblage-level variables had higher prediction accuracies with Pearson's r values of 0.61 for diversity and 0.71 for richness. The comparisons of the different methods for extrapolating species densities over a single marine protected area varied greatly in their abundance estimates with the uniform extrapolation (density values extrapolated evenly over the rocky reef) always estimating much greater abundances. The other two methods, which took into account variation in the geomorphic structure of the reef, provided much lower abundance estimates. Main conclusions: Species distribution models that combine geomorphic, oceanographic and biogenic habitat variables can reliably predict spatial patterns of species density and assemblage attributes of temperate reef fishes at spatial scales of 50 m. Thus, SDMs show great promise for informing spatial and ecosystem-based approaches to conservation and fisheries management. © 2015 John Wiley

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intermittent stream systems create a mosaic of aquatic habitat that changes through time, potentially challenging freshwater invertebrate dispersal. Invertebrates inhabiting these mosaics may show stronger dispersal capacity than those in perennial stream systems. To relate different combinations of dispersal and drought survival strategies to species persistence, we compared the distribution and dispersal potential of six invertebrate species across all streams in a montane landscape where drying is becoming increasingly frequent and prolonged. Invertebrates were collected from seventeen streams in the Victoria Range, Grampians National Park, Victoria, Australia. The species analysed were as follows: the caddisflies Lectrides varians Moseley (Leptoceridae) and Agapetus sp. (Glossosomatidae); the mayflies Nousia AV1 and Koorrnonga AV3 (Leptophlebiidae); the water penny beetle Sclerocyphon sp. (Psephenidae); and a freshwater crayfish Geocharax sp. nov. 1 (Parastacidae). These species were widespread in the streams and varied in their dispersal and drought survival strategies. The distribution of each species across the Victoria Range, their drought responses and within-stream habitat associations were determined. Hypotheses of the dispersal capacity and population structure for each species were developed and compared to four models of gene flow: Death Valley Model (DVM), Stream Hierarchy Model (SHM), Headwater Model (HM) or panmixia (PAN). Molecular genetic methods were then used to infer population structure and dispersal capacity for each species. The large caddisfly Lectrides resisted drought through aestivation and was panmictic (PAN) indicating strong dispersal capacity. Conversely, the small caddisfly Agapetus relied on perennially flowing reaches and gene flow was limited to short distances among stream headwaters, resembling the HM. Both mayflies depended on perennial surface water during drying and showed evidence of gene flow among streams: Koorrnonga mainly dispersed along stream channels within catchments, resembling the SHM, whereas Nousia appeared to disperse across land by adult flight. Sclerocyphon relied on perennial water to survive drying and showed an unusual pattern of genetic structure that indicated limited dispersal but did not resemble any of the models. Geocharax survived drought through aestivation or residence in perennial pools, and high levels of genetic structure indicated limited dispersal among streams, resembling the DVM. Despite good knowledge of species' drought survival strategies, the population structure of four species differed from predictions. Dispersal capacity varied strongly among species; most species were poor dispersers and only one species showed panmixia. Therefore, intermittent stream species may not necessarily be better dispersers than those in perennial streams. Species showing strong drought resistance strategies differed in dispersal capacity. Knowledge of life-history characteristics, distribution and refuge use does not necessarily enable successful prediction of invertebrate dispersal pathways or population structure. Dispersal among intermittent streams may be restricted to relatively short distances (km) for most invertebrate species. Thus, frequent drought refuges (perennial water) that provide strong connectivity to subpopulations through stream flow (hydrological dispersal), or continuous terrestrial vegetation (flight dispersal), will be critical to maintain genetic diversity, adaptability and population persistence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invasion pathways of pest arthropods can be traced using genetic tools to develop an understanding of the processes that have shaped successful invasions and to inform both pest management and conservation strategies in their non-native and native ranges, respectively. The redlegged earth mite, Halotydeus destructor, is a major economic pest in Australia, successfully establishing and spreading after arrival from South Africa more than 100 years ago. Halotydeus destructor has recently expanded its range and evolved resistance to numerous pesticides in Australia, raising questions around its origin and spread. Location: South Africa and Australia. Methods: We sampled H. destructor populations in South Africa and Australia and developed a microsatellite marker library. We then examined genetic variation using mtDNA and microsatellite markers across both native and invasive ranges to determine endemic genetic diversity within South Africa, identify the likely origin of invasive populations and test genetic divergence across Australia. Results: The data show that H. destructor comprises a cryptic species complex in South Africa, with putative climatic/host plant associations that may correspond to regional variation. A lineage similar to that found near Cape Town has spread throughout Western and eastern Australia, where populations remain genetically similar. Main conclusions: Tracing the invasion pathway of this economically important pest revealed cryptic lineages in South Africa which points to the need for a taxonomic revision. The absence of significant genetic structure across the wide invasive range of H. destructor within Australia has implications for the development (and spread) of pesticide resistance and also points to recent local adaptation in physiological traits.