5 resultados para space optical communications

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An approximate numerical technique for modeling optical pulse propagation through weakly scattering biological tissue is developed by solving the photon transport equation in biological tissue that includes varying refractive index and varying scattering/absorption coefficients. The proposed technique involves first tracing the ray paths defined by the refractive index profile of the medium by solving the eikonal equation using a Runge-Kutta integration algorithm. The photon transport equation is solved only along these ray paths, minimizing the overall computational burden of the resulting algorithm. The main advantage of the current algorithm is that it enables to discretise the pulse propagation space adaptively by taking optical depth into account. Therefore, computational efficiency can be increased without compromising the accuracy of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite Wheatstone’s academic interests in the device, the stereoscope languished somewhat as an optical toy. Yet the advent of 3D screen-spaces for home and mass entertainment suggests today’s consumers and practitioners of screen culture hold the view that screen culture will be ‘improved’ through 3D imaging technologies. Like cinema and photography, stereoscopic 3D imaging has the potential to transform visual culture. But what is transformed, as optics and electronic imaging techniques deliver Alice in Wonderland in 3D? This paper links the advent of 3D cinema and TV to the notion that vision is itself a ‘technology of the visual’. As such, our innate binocular stereoacuity is ripe for exploitation by developers of 3D imaging technologies. I argue that contemporary 3D imaging marks an epistemological visual-perceptual shift: toward screenspaces becoming spaces for potential action. Such a shift entails seeing as doing rather than seeing as thinking. 3D imaging exploits binocular vision’s spatial acuity (stereopsis), but is effective only for objects within near distal space. The 3D effect tapers off dramatically for objects only some metres away, because the two retinal images lack significant lateral disparity (difference) to trigger stereopsis: the imagery flattens out and becomes ‘monoscopic’. Information available from conventional 2D media entails a peculiarly unspecified spatiality. Perceptually, the contents of a conventional cinematic screen are like those of a painting: they are situated neither near nor far, and constitute a shared and ambiguous visual space. Our own eyes are like those of a cat: frontally placed for predatory action. The visuality of 3D screen-spaces assumes a perceptuality of the near-by and close at hand, since this is the structure of the visible information to which stereopsis is adapted to respond. Noting the binocular acuity of predatory animals, as well as some etymological links, this paper examines the implications of perceptually ‘capturing’ the sensation of visually solid objects in one’s immediate space. Stereopsis is about decisive action within an immediate environment: but it also presupposes the single viewpoint of an active observer toward which the 3D imagery is targeted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 The measurement of the range of hand joint movement is an essential part of clinical practice and rehabilitation. Current methods use three finger joint declination angles of the metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints. In this paper we propose an alternate form of measurement for the finger movement. Using the notion of reachable space instead of declination angles has significant advantages. Firstly, it provides a visual and quantifiable method that therapists, insurance companies and patients can easily use to understand the functional capabilities of the hand. Secondly, it eliminates the redundant declination angle constraints. Finally, reachable space, defined by a set of reachable fingertip positions, can be measured and constructed by using a modern camera such as Creative Senz3D or built-in hand gesture sensors such as the Leap Motion Controller. Use of cameras or optical-type sensors for this purpose have considerable benefits such as eliminating and minimal involvement of therapist errors, non-contact measurement in addition to valuable time saving for the clinician. A comparison between using declination angles and reachable space were made based on Hume's experiment on functional range of movement to prove the efficiency of this new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of molecular gels formed in a confined space have potential applications in transdermal delivery, artificial skin, molecular electronics, etc. The microstructures and properties of thin gel films can be significantly different from those of their bulk counterparts. However, so far a comprehensive understanding of the effects of spatial confinement on the molecular gelation kinetics, fiber network structure and related mechanical properties is still lacking. In this work, using rheological techniques, we investigated the effect of one-dimensional confinement on the formation kinetics of fiber networks in the molecular gelation process. Fractal analyses of the kinetic information in terms of an extended Dickinson model enabled us to describe quantitatively the distinct kinetic signature of molecular gelation. The structural features derived from gelation kinetics support well the fractal patterns of the fiber networks acquired by optical and electron microscopy. With the kinetics-structure correlation, we can gain an in-depth understanding of the confinement-induced differences in the structure and consequently the mechanical properties of a model molecular gelling system. Particularly, the confinement induced structural transition, from a three-dimensional, dense and compact spherulitic network composed of highly branched fibers to a quasi-two-dimensional sparse spherulitic network composed of less branched fibers and entangled fibrils at the boundary areas, renders a gel film to become less stiff but more ductile. Our study suggests here a new strategy of engineering the fiber network microstructure to achieve functional gel films with unusual but useful properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data traffic in cellular networks has dramatically increased in recent years as the emergence of various new wireless applications, which imposes an immediate requirement for large network capacity. Although many efforts have been made to enhance wireless channel capacity, they are far from solving the network capacity enhancement problem. Device-to-Device (D2D) communication is recently proposed as a promising technique to increase network capacity. However, most existing work on D2D communications focuses on optimizing throughput or energy efficiency, without considering economic issues. In this paper, we propose a truthful double auction for D2D communications (TAD) in multi-cell cellular networks for trading resources in frequencytime domain, where cellular users with D2D communication capability act as sellers, and other users waiting to access the network act as buyers. Both intra-cell and inter-cell D2D sellers are accommodated in TAD while the competitive space in each cell is extensively exploited to achieve a high auction efficiency. With a sophisticated seller-buyer matching, winner determination and pricing, TAD guarantees individual rationality, budget balance, and truthfulness. Furthermore, we extend our TAD design to handle a more general case that each seller and buyer ask/bid multiple resource units. Extensive simulation results show that TAD can achieve truthfulness as well as high performance in terms of seller/buyer sanctification ratio, auctioneer profit and network throughput.