45 resultados para solvent additives

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf 2 electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T1) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. 1H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both 19F and 7Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zwitterionic electrolytes such as N-methyl-N-(n-butanesulfonate) pyrrolidinium are added to electrolyte compositions such as polyelectrolytes, ionic liquid electrolytes and molecular solvent electrolytes (for example, lithium hexafluorophosphate) to improve conductivity of the ion species, such as lithium, in the electrolyte. This has application to lithium based energy storage devices such as batteries and supercapacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zwitterionic electrolytes such as N-methyl-N-(n-butanesulfonate) pyrrolidinium are added to electrolyte compositions such as polyelectrolytes, ionic liquid electrolytes and molecular solvent electrolytes (for example, lithium hexafluorophosphate) to improve conductivity of the ion species, such as lithium, in the electrolyte. This has application to lithium based energy storage devices such as batteries and supercapacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the properties of 1 wt.% vinylene carbonate, vinyl ethylene carbonate, and diphenyloctyl phosphate additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. The additive electrolytes were dominant both in surface formation and internal resistance. In particular, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that diphenyloctyl phosphate is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the novel methylene-bridged tetraorganodistannoxane {[Ph(HO)SnCH2Sn(I)Ph]O}4 (1) depends on the solvent it is crystallised from and is controlled by hydrogen bridges and interhalogen interactions.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fipronil, a phenyl pyrazole pesticide, is aerially applied in eastern Australia to control locust outbreaks, usually as “Adonis 3UL Insecticide®” (BASF), an ultra low (UL) volume formulation containing 0.3% active pesticide. We tested the toxicities of technical-grade fipronil, the Adonis 3UL formulation and its components in zebra finch, a native bird at risk of exposure in locust control regions. We estimated oral-dose LD50 by the Up-and-Down method. Under laboratory conditions, we identified unexpectedly high toxicities due exclusively to diacetone alcohol (DAA), a solvent making up 12.5% of the Adonis 3UL formulation. In contrast, finches were asymptomatic when exposed to 0.3% technical grade fipronil dissolved in a minimum amount of acetone. Depending upon the behaviour and persistence of DAA under field conditions, this formulation of Adonis 3UL may pose a far greater threat to the health of small birds and possibly other vertebrates than expected for fipronil alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike other fibres, wool felts readily when agitated in the presence of water. For this reason, only the minimum necessary quantity of water is used when the garments are drycleaned. However, wool fibres are often deliberately felted to obtain a warm bulky handle by controlled addition of water to the solvent. This process is known as solvent milling and recently, it has become a popular alternative to the traditional milling in water alone. Although the factors which influence milling in solvent are known, the relationships between them are not well defined. A comprehensive study of the relationship between water distribution and milling shrinkage during agitation of wool in perchloroethylene has been carried out in this thesis. The Karl Fischer method of determination was used throughout to establish the distribution of water between the wool fibre and the solvent liquor. The emphasis was placed on practical production variables. The role of surfactant in affecting milling shrinkage through its effect on the transport of water to the fibre from the solvent was examined. The ability of a suitable surfactant in promoting even and rapid sorption of water by the fibre was related to the colloidal properties of the milling liquor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multinuclear pulsed field gradient NMR measurements and rheological viscosity measurements were performed on three series of polymer gel electrolytes. The gels were based on a lithium salt electrolyte swollen into a copolymer matrix comprising an acrylate backbone and ethylene oxide side chains. In each series the side chains differed in length and number, but the acrylate-to-ethylene oxide ratio was kept constant. It was found that the self-diffusion coefficient of the cations was much lower than that of the anions, and that it decreased rapidly when the side chains got longer. In contrast, the self-diffusion coefficient of the anions was found to be independent of chain length. In the gel electrolytes, the diffusion coefficients of the solvent molecules are relatively constant despite an increased viscosity with increasing length of the side chains. However, in salt-free gels made for comparison, the diffusion coefficients of the solvent molecules decreased with increasing length of the side chains, which is consistent with an increased viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids (ILs) form a novel class of electrolytes with unique properties that make them attractive candidates for electrochemical devices. In the present study a range of electrolytes were prepared based on the IL N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl) amide ([C3mpyr][NTf2]) and LiNTf2 salt. The traditional organic solvent diluents vinylene carbonate (VC), ethylene carbonate (EC), tetrahydrofuran (THF) and toluene were used as additives at two concentrations, 10 and 20 mol%, leading to a ratio of about 0.6 and 1.3 diluent molecules to lithium ions, respectively. Most promisingly, the lithium ions see the greatest effect in the presence of all the diluents, except toluene, producing a lithium self-diffusion coefficient of almost a factor of 2.5 times greater for THF at 20 mol%. Raman spectroscopy subtly indicates that THF may be effectively breaking up a small portion of the lithium ion–anion interaction. While comparing the measured molar conductivity to that calculated from the self-diffusion coefficients of the constituents indicates that the diluents cause an increase in the overall ion clustering. This study importantly highlights that selective ion transport enhancement is achievable in these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of solvent uptake on the relaxation behaviour, morphology and mechanical properties of poly(ether ether ketone) (PEEK), poly(etherimide) (PEI) and a 50/50 PEEK/PEI blend have been investigated. Amorphous films were immersed in acetone at 25°C, 35°C and 45°C until equilibrium uptake was achieved. The films were then examined by wide angle X-ray scattering (WAXS), differential scanning calorimetry (d.s.c.), dynamic mechanical relaxation spectroscopy and mechanical testing. WAXS and d.s.c. revealed that the degree of solvent induced crystallinity in PEEK is constant with immersion temperature, whereas the degree of induced crystallinity in the 50/50 blend is strongly temperature dependent. The dynamic mechanical studies confirmed that a significant decrease in glass transition temperature results from the plasticizing effect of the solvent and that solvent and thermally crystallized samples have different relaxation characteristics. Mechanical property tests showed that the yield stress and tensile strength of the blend are dominated by PEEK and the degree of crystallinity, while the modulus is more sensitive to the extent of plasticization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent uptake in thin, amorphous samples of poly(ether ether ketone), poly(ether imide) and a 50/50 blend has been measured as a function of temperature. Diffusion coefficients, percentage weight increase and apparent activation energies have been calculated. The 50/50 blend shows anomalous diffusion behaviour which may be attributed to specific interactions between the homopolymers and density changes on blending.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.