18 resultados para soil water

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water repellent soils are difficult to irrigate and susceptible to preferential flow, which enhances the potential for accelerated leaching to groundwater of hazardous substances. Over 5 Mha of Australian soil is water repellent, while treated municipal sewage is increasingly used for irrigation. Only if a critical water content is exceeded will repellent soils become wettable. To avoid excessive loss of water from the root zone via preferential flow paths, irrigation schemes should therefore aim to keep the soil wet enough to maintain soil wettability. Our objective was to monitor the near-surface water content and water repellency in a blue gum (Eucalyptus globulus) plantation irrigated with treated sewage. The plantation's sandy soil surface was strongly water repellent when dry. For 4 months, three rows of 15 blue gum trees each received no irrigation, three other rows received 50% of the estimated potential water use minus rainfall, and three more rows received 100%. During this period, 162 soil samples were obtained in three sampling rounds, and their water content (% dry mass) and degree of water repellency determined. Both high and low irrigation effectively wetted up the soil and eliminated water repellency after 2 (high) or 4 (low) months. A single-peaked distribution of water contents was observed in the soil samples, but the water repellency distribution was dichotomous, with 44% extremely water-repellent and 36% wettable. This is consistent with a threshold water content at which a soil sample changes from water repellent to wettable, with spatial variability of this threshold creating a much wider transition zone at the field scale. We characterized this transition zone by expressing the fraction of wettable samples as a function of water content, and demonstrated a way to estimate from this the wettable portion of a field from a number of water content measurements. To keep the plantation soil wettable, the water content must be maintained at a level at which a significant downward flux is likely, with the associated enhanced leaching. At water contents with negligible downward flux, the field is water repellent, and leaching through preferential flow paths is likely. Careful management is needed to resolve these conflicting requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive and simple analytical method was developed for analyzing the binary mixed pesticides of prometryne and acetochlor in soilwater system by gas chromatography/mass spectrometry (GC/MS). The sample solution was first purified by C18 solid-phase extraction column, which was leached by acetone. The leachate was enriched to 1.0 mL by pressure blowing concentrator and then analyzed by GC/MS. The linear calibration curves were showed in the range of 1–15 μg/mL with a correlation coefficient of 0.9991. The average recoveries (n = 5) were between 95.3 and 115.7%, with relative standard deviations ranged from 1.71 and 7.95%. The limits of detection of Prometryne/Acetochlor were up to 0.06 and 0.17 μg/mL, respectively. This method provides a reliable approach to examine and evaluate the residues of prometryne and acetochlor in the soilwater system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reported adsorption mechanism of mixed pesticides Prometryne-Acetochlor (PA) in soil. Thermodynamics and adsorption isotherms were used to preliminarily evaluate adsorption force, and IR and XRD were used to characterize adsorption characteristics between Prometryne/Acetochlor (PA) and soil, The result shows that adsorption isotherms is F-type, adsorptive heat are 9.57 kJ/mol and -93.83 kJ/mol of prometryne and acetochlor respectively. Hydrogen bonds also had been confirmed by IR and XRD analysis. The results can provide a theoretical support to the use of mixed pesticides agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wildfires can induce or enhance soil water repellency under a range of vegetation communities. According to mainly USA-based laboratory studies, repellency is eliminated at a maximum soil temperature (T) of 280–400°C. Knowledge of T reached during a wildfire is important in evaluating post-fire soil physical properties, fertility and seedbed status. T is, however, notoriously difficult to ascertain retrospectively and often based on indicative observations with a large potential error. Soils under fire-prone Australian eucalypt forests tend to be water repellent when dry or moderately moist even if long unburnt. This study aims to quantify the temperature of water repellency destruction for Australian topsoil material sampled under three sites with contrasting eucalypt cover (Eucalyptus sieberi, E. ovata and E. baxteri). Soil water repellency was present prior to heating in all samples, increased during heating, but was abruptly eliminated at a specific T between 260 and 340°C. Elimination temperature varied somewhat between samples, but was found to be dependent on heating duration, with longest duration resulting in lowest elimination temperature. Results suggest that post-fire water repellency may be used as an aid in hindcasting soil temperature reached during the passage of a fire within repellency-prone environments.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Little attention has been paid to the possibility that soil water repellency could enhance non-equilibrium water flow and solute transport through macropores present in structured clay soils. In this study, we measured infiltration and solute transport in a clay soil under near-saturated conditions in both the field using tension infiltrometers and in the laboratory on undisturbed soil columns. Measurements were made on adjacent plots under grass and continuous arable cultivation. Steady-state field infiltration rates measured using water and ethanol as the infiltrating fluids demonstrated that the soil macroporosity under grass was better developed, but that much of the structural pore system was inactive due to water repellency. No water repellency was detected on the arable plot disturbed by tillage. Dye tracing showed that the conducting macroporosity was largely comprised of earthworm channels in the grassed plot and inter-aggregate voids resulting from ploughing in the arable plot. Tracer breakthrough curves measured on field-dry soil indicated rapid macropore transport in columns taken from both plots, although the degree of non-equilibrium transport appeared somewhat stronger under grass. This result, which was attributed to water repellency, was also consistent with the larger flow-weighted mean pore size found in the field infiltration experiments. It is concluded that water repellency in undisturbed structured clay soils can have significant effects on the occurrence of non-equilibrium water and solute transport in macropores.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes,Richards equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macro pores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements.Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fraction aladvection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW). Of these, the SCM and the CDE are well established, and their strengths and weaknesses are identified. The FADE and the CTRW are more recent,and only a tentative strength weakness opportunity threat (SWOT)analysis can be presented at this time. We discuss the effect of the number of dimensions in a numerical model and the spacing between model nodes on solute spreading and the values of the solute-spreading parameters. In order to meet the increasing complexity of environmental problems, two approaches of model combination are used: Model integration and model coupling. Amain drawback of model integration is the complexity of there sulting code. Model coupling requires a systematic physical domain and model communication analysis. The setup and maintenance of a hydrologic framework for model coupling requires substantial resources, but on the other hand, contributions can be made by many research groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After an initial evaluation of several solvents, the efficiency of Soxhlet extractions with isopropanol/ammonia (s.g. 0.88) (70 : 30 v : v; 24 h) in extracting compounds associated with water repellency in sandy soils was examined using a range of repellent and wettable control soils (n = 15 and 4) from Australia, Greece, Portugal, The Netherlands, and the UK. Extraction efficiency and the role of the extracts in causing soil water repellency was examined by determining extract mass, sample organic carbon content and water repellency (after drying at 20°C and 105°C) pre- and post-extraction, and amounts of aliphatic C–H removed using DRIFT, and by assessing the ability of extracts to cause repellency in acid-washed sand (AWS).

Key findings are: (i) none of organic carbon content, amount of aliphatic C–H, or amount of material extracted give any significant correlation with repellency for this diverse range of soils; (ii) sample drying at 105°C is not necessarily useful before extraction, but may provide additional information on extraction effectiveness when used after extraction; (iii) the extraction removed repellency completely from 13 of the 15 repellent samples; (iv) extracts from all repellent and wettable control soils were capable of inducing repellency in AWS. The findings suggest that compounds responsible for repellency represent only a fraction of the extract composition and that their presence does not necessarily always cause repellency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:



A modified version of the popular agrohydrological model SWAP has been used to evaluate modelling of soil water flow and crop growth at field situations in which water repellency causes preferential flow. The parameter sensitivity in such situations has been studied. Three options to model soil water flow within SWAP are described and compared: uniform flow, the classical mobile-immobile concept, and a recent concept accounting for the dynamics of finger development resulting from unstable infiltration. Data collected from a severely water-repellent affected soil located in Australia were used to compare and evaluate the usefulness of the modelling options for the agricultural management of such soils.

The study shows that an assumption of uniform flow in a water-repellent soil profile leads to an underestimation of groundwater recharge and an overestimation of plant transpiration and crop production. The new concept of modelling taking finger dynamics into account provides greater flexibility and can more accurately model the observed effects of preferential flow compared with the classical mobile–immobile concept. The parameter analysis indicates that the most important factor defining the presence and extremity of preferential flow is the critical soil water content.

Comparison of the modelling results with the Australian field data showed that without the use of a preferential flow module, the effects of the clay amendments to the soil were insufficiently reproduced in the dry matter production results. This means that the physical characteristics of the soil alone are not sufficient to explain the measured increase in production on clay amended soils. However, modelling with the module accounting for finger dynamics indicated that the preferential flow in water repellent soils that had not been treated with clay caused water stress for the crops, which would explain the decrease in production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although soils are generally considered to wet readily, some are actually water repellent at the surface and in the rhizosphere. This phenomenon occurs at low to moderate moisture contents and has been reported from soils under a range of vegetation types and from many regions around the globe. Water repellency in soils can have serious environmental implications including reduced seed germination and plant growth as well as irrigation efficiency, accelerated soil erosion, and enhanced leaching of agrochemicals through preferential flow. it has been proposed that water repellency is caused by the accumulation of hydrophobic organic compounds released as root exudates, microbial byproducts or from decomposing organic matter, which are deposited on mineral or aggregate surfaces, or are present as interstitial matter, Few studies to date have attempted to isolate and characterize these compounds and their structure is therefore only poorly understood, These studies have generally focussed on only a single soil or a small range of samples, have not included non-repellent soils as a control and have not always been able to demonstrate that the substances isolated are indeed responsible for repellency formation.

This study reports on the first part (extraction procedures) of a research programme addressing these gaps in current knowledge by investigating a wide range of severely repellent and wettable ‘control’ samples from different countries, and by including assessments of extraction efficiency and ability of extracts to cause repellency. Analytical methods include DRIFT (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) of soils and IR (Infrared) analysis of extracts.

Key findings are that (i) soil sample heating after extraction is valuable in assessing the effectiveness of the extraction procedure, (ii) Soxhlet extraction using isopropanol/ ammonia (70/30 v/v) was the most effective method in extracting hydrophobic compounds, while leaving the ability of extracted compounds to induce water repellency virtually unaffected, (iii) wettable control soils also contain hydrophobic substances capable of inducing water repellency, (iv) the amount of organic compounds extracted was poorly related to sample repellency, indicating that compounds responsible for repellency may only represent a small fraction of the extract, (v) differences in extraction efficiency between different samples indicate that the compounds responsible may differ generically and/or in terms of their bonding to minerals, and (vi) the combination of repellency assessments with DRIFT on soils and JR on extracts used with internal standards has considerable potential to allow quantification of CH bearing organic matter in the soil, the efficiency of extraction processes for its removal, and its significance in causing water repellency in soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plastic mulch films are widely used in agriculture to enhance crop production by suppressing weeds, conserving soil water and increasing soil temperature. The majority of plastic mulch films are however not biodegradable and are typically removed after each growing season. Recovery of these plastics from the soil is difficult and can affect successive crop yields while causing substantive cost to the environment and farmers. Due to increasingly stringent regulations regarding use of non-degradable plastic in agriculture they are likely to be phased out in the near future. In the past 10 years several classes of 'biodegradable' materials have been studied but most of these films are reported to be relatively weak in mechanical properties, not efficiently degradable and cost prohibitive.More recently, researchers have turned their attention to sprayable biodegradable polymer coatings for use on soils due to their easy application and versatility. The ability to mix natural additives, plasticizers and fillers to control and improve the mechanical and biodegradation properties of the core polymeric mulch film has been the driving force behind the development of these next generation sprayable polymeric mulch films.There have been many excellent review articles and papers written about polymeric mulch film, but the developing sprayable polymer systems have not been reviewed to the same extent. This paper focusses on the research progress in the area of biodegradable and sprayable polymer mulch film with emphasis on polymer formulations, properties and application. It also discusses current research to highlight the importance, potential benefits and future challenges in developing a cost effective biodegradable sprayable film for use in production agriculture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agricultural soils are a major source of nitrous oxide (N2O) emissions and an understanding of factors regulating such emissions across contrasting soil types is critical for improved estimation through modelling and mitigation of N2O. In this study we investigated the role of soil texture and its interaction with plants in regulating the N2O fluxes in agricultural systems. A measurement system that combined weighing lysimeters with automated chambers was used to directly compare continuously measured surface N2O fluxes, leaching losses of water and nitrogen and evapotranspiration in three contrasting soils types of the Riverine Plain, NSW, Australia. The soils comprised a deep sand, a loam and a clay loam with and without the presence of wheat plants. All soils were under the same fertilizer management and irrigation was applied according to plant water requirements. In fallow soils, texture significantly affected N2O emissions in the order clay loam > loam > sand. However, when planted, the difference in N2O emissions among the three soils types became less pronounced. Nitrous oxide emissions were 6.2 and 2.4 times higher from fallow clay loam and loam cores, respectively, compared with cores planted with wheat. This is considered to be due to plant uptake of water and nitrogen which resulted in reduced amounts of soil water and available nitrogen, and therefore less favourable soil conditions for denitrification. The effect of plants on N2O emissions was not apparent in the coarse textured sandy soil probably because of aerobic soil conditions, likely caused by low water holding capacity and rapid drainage irrespective of plant presence resulting in reduced denitrification activity. More than 90% of N2O emissions were derived from denitrification in the fine-textured clay loam-determined for a two week period using K15NO3 fertilizer. The proportion of N2O that was not derived from K15NO3 was higher in the coarse-textured sand and loam, which may have been derived from soil N through nitrification or denitrification of mineralized N. Water filled pore space was a poorer predictor of N2O emissions compared with volumetric water content because of variable bulk density among soil types. The data may better inform the calibration of greenhouse gas prediction models as soil texture is one of the primary factors that explain spatial variation in N2O emissions by regulating soil oxygen. Defining the significance of N2O emissions between planted and fallow soils may enable improved yield scaled N2O emission assessment, water and nitrogen scheduling in the pre-watering phase during early crop establishment and within rotations of irrigated arable cropping systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to facilitate the better management of river basin resources, the Glenelg-Hopkins region in south-east Australia required an accurate and up to date land use map. Land use has a major impact on Australia's natural resources including its soil, water, flora and fauna and plays a major role in determining basin health. Inappropriate land use and practices have contributed to extensive dryland salinity and water quality problems. Land use data is often required for environmental models and in most cases the reliability of model outputs is dependent on the spatial detail and accuracy of the land use mapping. This paper examines methods to obtain an up to date land use map and a detailed accuracy assessment using Landsat ETM+ data for a regional basin. A multi-source based approach allowed the collection of 4817 ground truth data points from the field investigation. This enabled researchers to (i) incorporate a full range of information into digital image analysis with significant improvements in accuracy and (ii) hold sufficient independent references for an accurate error assessment. Classification accuracy was significantly improved using a stratification design, in which the region is sub-divided into smaller homogenous areas as opposed to a full scene classification technique. The overall classification accuracy was 84% (KHAT= 0.833) for the stratified approach compared to 76% (KHAT= 0.743) for the full scene classification. Effective assessment, planning and management of basins are dependent on a sound knowledge of the distribution and variability of land use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human populations can cause serious damage to the natural environment. This, however, depends on the type of society and its size. Many traditional communities have a balanced relation with the environment, using practices for managing the soil, water and natural resources in order to satisfy their needs that are compatible to the general goals of environmental preservation.

The most usual approach to environmental conservation in the world sees human beings as intruders, potentially destroyers of the nature and, as a consequence, generally requires local population to be expelled from the protected regions. This situation has generated social conflicts because many protected areas, particularly in developing countries, are inhabited by indigenous or other traditional communities.

The disagreement about expelling or maintaining traditional communities in environmental conservation areas is strengthened by the lack of diagnostics on which changes are produced or suffered by communities in the region where they live. This paper presents a methodology developed to analyse land use dynamics in region with environmental conservation and traditional communities. We seek a better understanding of the way traditional communities use their space, the spatial pattern of land uses, which factors drive land use change, which impacts can be seen in those regions and identify the effects of conservation policies on land use dynamics.

The application of the method to the National Park of Superagui, Brazil, has successfully performed characterisation, analysis and simulation of land use dynamics in a region of environmental importance. Testing different scenarios has suggested that the adoption of a less restrictive policy for environmental conservation would have resulted in less social conflict with the same environmental efficiency than the established current policy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of brassicas. Management of clubroot is difficult, and the best means of avoiding the disease include planting in areas where P. brassicae is not present and using plants and growing media free from pathogen inoculum. As P. brassicae is not culturable, its detection has traditionally relied on plant bioassays, which are time-consuming and require large amounts of glasshouse space. More recently, fluorescence microscopy, serology, and DNA-based methods have all been used to test soil, water, or plant samples for clubroot. The use of fluorescence microscopy to detect and count pathogen spores in the soil requires significant operator skill and is unlikely to serve as the basis for a routine diagnostic test. By contrast, serologic assays are inexpensive and amenable to high-throughput screening but need to be based on monoclonal antibodies because polyclonal antisera cannot be reproduced and are therefore of limited quantity. Several polymerase chain reaction (PCR)-based assays have also been developed; these are highly specific for P. brassicae and have been well-correlated with disease severity. As such, PCR-based diagnostic tests have been adopted to varying extents in Canada and Australia, but wide implementation has been restricted by sample processing costs. Efforts are underway to develop inexpensive serologic on-farm diagnostic kits and to improve quantification of pathogen inoculum levels through real-time PCR. Proper detection and quantification of P. brassicae will likely play an increasingly important role in the development of effective clubroot management strategies.