2 resultados para soil enzymes

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biochemical responses of the earthworms, Eisenia fetida, exposed to a series of Cd concentrations (0.00, 1.25, 2.50, 5.00 and 10.00 mg Cd2+ kg−1 soil) for up to 8 weeks were investigated, aiming to evaluate the sublethal effects of Cd with long exposure and to explore the potential for applying these responses as biomarkers to indicate the Cd-contaminated soil. The following biochemical parameters were determined: cytochrome P450 (CYP) contents and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-s-transferase (GST). Cadmium concentrations in all earthworms were apparently accumulated in 4 weeks, and showed minor changes in weeks 6–8 compared to the first 4 weeks. CYP presented a significant elevation in 2–4 weeks and a decline in 6–8 weeks in each treated group. The activities of SOD and CAT showed an obvious increase with exposure of 6–8 weeks while their levels were not affected in 4 weeks in each treated group. GST activity revealed significant activation starting from week 4. This study confirmed the significance of applying a suite of biomarkers rather than a selective choice to assess the impact of pollutants on organisms. It also indicated that the observed effects were more dependent upon exposure duration than dose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (β-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon:nitrogen (C:N) and fungal:bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling as well.