4 resultados para software creation infrastructure

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the application of systems modelling benchmarks to determine the viability of systems modelling software and its suitability for modelling critical infrastructure systems. This research applies the earlier research that related to developing benchmarks that when applied to systems modelling software will indicate its likely suitability to modelling critical infrastructure systems. In this context, the systems modelling benchmarks will assess the practicality of CPNTools to the task of modelling critical infrastructure systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Denial of Service attacks is one of the most challenging areas to deal with in Security. Not only do security managers have to deal with flood and vulnerability attacks. They also have to consider whether they are from legitimate or malicious attackers. In our previous work we developed a framework called bodyguard, which is to help security software developers from the current serialized paradigm, to a multi-core paradigm. In this paper, we update our research work by moving our bodyguard paradigm, into our new Ubiquitous Multi-Core Framework. From this shift, we show a marked improvement from our previous result of 20% to 110% speedup performance with an average cost of 1.5 ms. We also conducted a second series of experiments, which we trained up Neural Network, and tested it against actual DDoS attack traffic. From these experiments, we were able to achieve an average of 93.36%, of this attack traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High Performance Computing (HPC) clouds have started to change the way how research in science, in particular medicine and genomics (bioinformatics) is being carried out. Researchers who have taken advantage of this technology can process larger amounts of data and speed up scientific discovery. However, most HPC clouds are provided at an Infrastructure as a Service (IaaS) level, users are presented with a set of virtual servers which need to be put together to form HPC environments via time consuming resource management and software configuration tasks, which make them practically unusable by discipline, non-computing specialists. In response, there is a new trend to expose cloud applications as services to simplify access and execution on clouds. This paper firstly examines commonly used cloud-based genomic analysis services (Tuxedo Suite, Galaxy and Cloud Bio Linux). As a follow up, we propose two new solutions (HPCaaS and Uncinus), which aim to automate aspects of the service development and deployment process. By comparing and contrasting these five solutions, we identify key mechanisms of service creation, execution and access that are required to support genomic research on the SaaS cloud, in particular by discipline specialists. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the first study on scheduling for cooperative data dissemination in a hybrid infrastructure-to-vehicle (I2V) and vehicle-to-vehicle (V2V) communication environment. We formulate the novel problem of cooperative data scheduling (CDS). Each vehicle informs the road-side unit (RSU) the list of its current neighboring vehicles and the identifiers of the retrieved and newly requested data. The RSU then selects sender and receiver vehicles and corresponding data for V2V communication, while it simultaneously broadcasts a data item to vehicles that are instructed to tune into the I2V channel. The goal is to maximize the number of vehicles that retrieve their requested data. We prove that CDS is NP-hard by constructing a polynomial-time reduction from the Maximum Weighted Independent Set (MWIS) problem. Scheduling decisions are made by transforming CDS to MWIS and using a greedy method to approximately solve MWIS. We build a simulation model based on realistic traffic and communication characteristics and demonstrate the superiority and scalability of the proposed solution. The proposed model and solution, which are based on the centralized scheduler at the RSU, represent the first known vehicular ad hoc network (VANET) implementation of software defined network (SDN) concept.