2 resultados para slow-release fertilizer

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Morphine withdrawal is characterized by physical symptoms and a negative affective state. The 41 amino acid polypeptide corticotropin-releasing hormone (CRH) is hypothesized to mediate, in part, both the negative affective state and the physical withdrawal syndrome. Here, by means of dual-immunohistochemical methodology, we examined the co-expression of the c-Fos protein and CRH following naloxone-precipitated morphine withdrawal. Rats were treated with slow-release morphine 50 mg/kg (subcutaneous, s.c.) or vehicle every 48 h for 5 days, then withdrawn with naloxone 5 mg/kg (s.c.) or saline 48 h after the final morphine injection. Two hours after withdrawal rats were perfused transcardially and their brains were removed and processed for immunohistochemistry. We found that naloxone-precipitated withdrawal of morphine-dependent rats increased c-Fos immunoreactivity (IR) in CRH positive neurons in the paraventricular hypothalamus. Withdrawal of morphine-dependent rats also increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis, however these were in CRH negative neurons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the study was to acclimatise wild-caught meagre (Argyrosomus regius) to captivity to produce viable eggs for aquaculture production. Twelve meagre (3 males and 9 females, mean weight = 20 ± 7 kg) were caught and transported to a land-based facility on 26 October 2006. During, March to June 2007, all three males were spermiating and five of the nine females were in vitellogenesis with mean maximum oocyte diameter ≥550 μm. No spontaneous spawning was observed. Two hormone treatments, either a single injection of gonadotropin-releasing hormone agonist (GnRHa, 20 μg kg−1 for females and 10 μg kg−1 for males) or a slow-release implant loaded with the same GnRHa (50 μg kg−1 for females and 25 μg kg−1 for males), were used to induce spawning on three different dates on 26 March 2007, 4 May 2007 and 18 April 2008. From each spawning event, the following parameters were determined: fecundity, number of floating eggs, egg size, fertilisation and hatching success, unfed larval survival, and proximal composition and fatty acid profile of the eggs. In 2007, two females that were injected on 26 March and 4 May spawned a total of 5 times producing 9,019,300 floating eggs and a relative fecundity of 198,200 eggs kg−1 and two different females that were implanted on the same dates spawned 14 times producing 12,430,000 floating eggs and a relative fecundity of 276,200 eggs kg−1. In 2008, a pair that was implanted spawned five times producing a total of 10,211,900 floating eggs and a relative fecundity of 527,380 eggs kg−1. The latency period was 48–72 h. Parameters were compared between hormone treatments, date of hormone induction and parents determined by microsatellites. Percentage hatch and egg size were 70 ± 0.3% and 0.99 ± 0.02 mm, respectively, for GnRHa-implanted fish and were significantly higher (P < 0.05) compared to 30 ± 0.3% and 0.95 ± 0.03 mm, respectively, for injected fish. Few differences were observed in proximal composition and fatty acid profile and for all spawns mean (% dry weight) lipid content was 17.3 ± 3.0%, carbohydrate was 4.4 ± 1.9% and protein was 31.5 ± 6.4% and the essential fatty acids: Arachidonic acid (ARA, 20:4n-6) ranged between 0.9 and 1% (of total fatty acids), eicosapentaenoic acid (EPA 20:5n-3) 7.7–10.4% and docosahexaenoic acid (DHA 22:6n-3), 28.6–35.4%. All good quality spawns were obtained in the second and/or third spawn after GnRHa treatment, whereas all bad quality spawns were obtained either on the first spawn or after the fifth spawn. Both spawning protocols gave commercially viable (1,000,000+) numbers of good quality eggs that could form the basis of a hatchery production.