32 resultados para single-layer graphene

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin-orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical vapor deposition (CVD) has recently been considered as the most reliable method to prepare high-quality monolayer graphene films, yet the as-grown graphene usually contains wrinkles and cracks or suffers from discontinuity. These defects can easily result in the shredding of large-sized graphene into small pieces even under a gentle disturbance. Herein, this work presents a cost-effective new method to produce high-quality GQDs by vigorous sonication of defective CVD graphene. The prepared GQDs can be easily and stably dispersed in organic solvents. Morphology and optical properties of the GQDs are investigated using a number of techniques. And we observed the as-prepared GQDs are highly homogeneous, mostly consisted of single-layered graphene, roughly round shapes less than 8 nm in a diameter, and exhibited a strong blue luminescence. Impressively, it is also confirmed that the as-obtained GQDs can act as a promising light absorption material for phototransistor with a hybrid film of GQDs and indium gallium zinc oxide (IGZO) as the channel layer. The GQD/IGZO phototransistor exhibited an appreciated photocurrent, which is 10 times larger than that of the IGZO one when exposed to 270 nm light.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates the enhancement of sensitivity of variable incidence angle LSPR biosensor by monitoring biomolecular interactions of biotin-streptavidin with gold thin film. The investigation is carried out by means of introducing an additional layer of graphene sheet on top of gold layer (graphene biosensor) and using different coupling configuration of laser beam. The sensitivity, which is indicated by the shift of plasmon resonance angle, increases with graphene deposited onto the gold layers and is linearly related with the number of graphene layers. In addition, an investigation of the shift of plasmon dip is carried out for two different analyte interfaces: air and water. It is found that graphene biosensor has better sensitivity for triangular prism, higher prism angle, and water interface. The evaluation approach involves a plot of a reflectivity curve as a function of the angle of incidence while the operating wavelength is kept fixed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A pH-sensitive, mechanically strong and thermally stable graphene/poly (acrylic acid) (graphene/PAA) hydrogel was prepared via reversible addition fragmentation transfer (RAFT) polymerizations in the presence of a cross-linking agent. The RAFT agent was covalently coupled onto graphene basal planes via an esterification reaction, with benzoic acid functionalities pre-attached on graphene with its aryl diazonium salt precursor. AFM and SEM analysis revealed the successful preparation of single layered graphene sheets and graphene/polymer hydrogels with pH controlled porous structures. Attenuated total reflection infrared (ATR-IR) and thermogravimetric analyzer (TGA) verified the successful stepwise preparation of graphene/PAA hydrogel. This graphene/PAA hydrogel was pH-sensitive and more mechanically elastic than the PAA hydrogel prepared without graphene. The pH sensitivity of the hydrogel was further utilized for controlled drug release. Doxorubicin was chosen as a model drug and loaded into the hydrogels. The drug loading and release experiment indicated that this hydrogel can be used to efficiently control drug release in the intestine environment (pH = 7.4), better than release in a more acidic environment.© 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical analysis is presented for the estimation of the number of contacts between fibers in random multilayer nanofibrous assemblies with arbitrary fiber diameter and orientation. The statistics of fiber contacts for single-layer nanofiber mats were considered first, and the equations were developed for three-dimensional multilayer nanofibrous assemblies by considering the superposition of the single-layer assemblies. Based on the theoretical approach presented here for multilayer nanofibrous networks, the network porosity, mean fiber diameter and a function of fiber aspect ratio contribute to a model to determine the average number of fiber contacts per unit fiber length in multilayer nanofibrous mats. The theory is studied parametrically and results compared with the work of a model presented by Samson. It is shown that the presented model compared to the existing models is more sensitive with the fiber diameter in the nano-scale. It is also believed that the presented theory for fiber-to-fiber contacts is more realistic and useful for further studies of multilayer nanofibrous assemblies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A position sensorless Surface Permanent Magnet Synchronous Motor (SPMSM) drive based on single layer Recurrent Neural Network (RNN) is presented in this paper. The motor equations are written in rotor fixed d-q reference frame. A PID controller is used to process the speed error to generate the reference torque current keeping the magnetizing current fixed. The RNN estimator is used to estimate flux components along the stator fixed stationary axes. The flux angle and the reference current phasor angle are used in vector rotator to generate the reference phase currents. Hysteresis current controller block controls the switching of the three phase inverter to apply voltage to the motor stator. Simulation studies on different operating conditions indicate the acceptability of the drive system. The proposed estimator can be used to accurately measure the motor fluxes and rotor angle over a wide speed range. The proposed control scheme is robust under load torque disturbances and motor parameter variations. It is also simple and low cost to implememnt in a practical environment

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air-permeable, super-liquid-repellent fabrics show strong resistance to various liquid fluids and have self-cleaning, anti-sticking, and anti-contaminating functions, which are very useful for development of function clothing. However, most of the liquid repellent fabrics are poor in durability.This book elaborated the development of durable super-liquid-repellent fabrics and explore novel property of liquid-repellent fabrics. It has resulted in two novel concepts to prepare durable liquid repellent fabrics. By combining liquid repellent with liquid absorbing features on different sides of single layer fabric, a novel directional-fluid transport property was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) is an important 2D nanomaterial, with many properties distinct from graphene. In this feature article, these unique properties and associated applications, often not feasible with graphene, are outlined. The article starts with characterization and identification of atomically thin BN. It is followed by demonstrating their strong oxidation resistance at high temperatures and applications in protecting metals from oxidation and corrosion. As flat insulators, BN nanosheets are ideal dielectric substrates for surface enhanced Raman spectroscopy (SERS) and electronic devices based on 2D heterostructures. The light emission of BN nanosheets in the deep ultraviolet (DUV) and ultraviolet (UV) regions is also included for its scientific and technological importance. The last part is dedicated to synthesis, characterization, and optical properties of BN nanoribbons, a special form of nanosheets.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt %) without compromise in LC properties. The as-prepared LC GO-SWNT dispersions were employed to achieve self-assembled layer-by-layer multifunctional 3D hybrid architectures comprising SWNTs and GO with unrivalled superior mechanical properties (Young’s modulus in excess of 50 GPa and tensile strength of more than 500 MPa).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a multilayer localized surface plasmon resonance (LSPR) graphene biosensor that includes a layer of graphene sheet on top of the gold layer, and the use of different coupled configuration of a laser beam. The study also investigates the enhancement of the sensitivity and detection accuracy of the biosensor through monitoring biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film. Additionally, the role of thin films of gold, silver, copper and aluminum in the performance of the biosensor is separately investigated for monitoring the binding of streptavidin to the biotin groups. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity, adsorption efficiency, and detection accuracy under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart; however, detection accuracy under the same resonance condition is reduced by 5.2% with a single graphene sheet. This reduction in detection accuracy (signal to noise ratio) can be compensated for by introducing an additional layer of silica doped B2O3 (sdB2O3) placed under the graphene layer. The role of prism configuration, prism angle and the interface medium (air and water) is also analyzed and it is found that the LSPR graphene biosensor has better sensitivity with triangular prism, higher prism angle, lower operating wavelength and larger number of graphene layers. The approach involves a plot of a reflectivity curve as a function of the incidence angle. The outcomes of this investigation highlight the ideal functioning condition corresponding to the best design parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a new robust single-hidden layer feedforward network (SLFN)-based pattern classifier is developed. It is shown that the frequency spectrums of the desired feature vectors can be specified in terms of the discrete Fourier transform (DFT) technique. The input weights of the SLFN are then optimized with the regularization theory such that the error between the frequency components of the desired feature vectors and the ones of the feature vectors extracted from the outputs of the hidden layer is minimized. For the linearly separable input patterns, the hidden layer of the SLFN plays the role of removing the effects of the disturbance from the noisy input data and providing the linearly separable feature vectors for the accurate classification. However, for the nonlinearly separable input patterns, the hidden layer is capable of assigning the DFTs of all feature vectors to the desired positions in the frequencydomain such that the separability of all nonlinearly separable patterns are maximized. In addition, the output weights of the SLFN are also optimally designed so that both the empirical and the structural risks are well balanced and minimized in a noisy environment. Two simulation examples are presented to show the excellent performance and effectiveness of the proposed classification scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A facile and highly efficient route to produce simultaneously porous and reduced graphene oxide by gamma ray irradiation in hydrogen is here demonstrated. Narrowly distributed nano-scale pores (average size of ∼3 nm and surface density >44,900 pore μm-2) were generated across 10 μm thick graphene oxide bucky-papers at a total irradiation dose of 500 kGy. The graphene oxide sheet reduction was confirmed to occur homogeneously across the structures by Fourier transform infrared spectroscopy and Raman analysis. This one-step, catalyst-free, high penetration and through-put technique, offers great promises potential for the mass production of reduced graphene oxide from cheap graphene oxide. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the development of a stacked electrode supercapacitor cell using stainless steel meshes as the current collectors and optimised single walled nanotubes (SWNT)-microwave exfoliated graphene oxide (mw rGO) composites as the electrode material. The introduction of mw rGO into a SWNT matrix creates an intertwined porous structure that enhances the electroactive surface area and capacitive performance due to the 3-D hierarchical structure that is formed. The composite structure was optimised by varying the weight ratio of the SWNTs and mw rGO. The best performing ratio was the 90% SWNT-10% mw rGO electrode which achieved a specific capacitance of 306 F g-1 (3 electrode measurement calculated at 20 mV s-1). The 90% SWNT-10% mw rGO was then fabricated into a stacked electrode configuration (SEC) which significantly enhanced the electrode performance per volume (1.43 mW h cm-3, & 6.25 W cm-3). Device testing showed excellent switching capability up to 10 A g-1, and very good stability over 10000 cycles at 1.0 A g-1 with 93% capacity retention. © the Partner Organisations 2014.