4 resultados para shock wave attenuation

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an innovative surface treatment technique for metal alloys, with the great improvement of their fatigue, corrosion and wear resistance performance. Finite element method has been widely applied to simulate the LSP to provide the theoretically predictive assessment and optimally parametric design. In the current work, 3-D numerical modelling approaches, combining the explicit dynamic analysis, static equilibrium analysis algorithms and different plasticity models for the high strain rate exceeding 106s-1, are further developed. To verify the proposed methods, 3-D static and dynamic FEA of AA7075-T7351 rods subject to two-sided laser shock peening are performed using the FEA package–ABAQUS. The dynamic and residual stress fields, shock wave propagation and surface deformation of the treated metal from different material modelling approaches have a good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since Guided wave (GW) is sensitive to small damage and can propagate a relatively longer distance with relatively less attenuation, GW-based method has been found as an effective and efficient way to detect incipient damages. In this study, a full-scale concrete joint was constructed to further verify the effectiveness of GW-based method on real civil structures. GW tests were conducted in three stages, including baseline, serviceability and damage conditions. The waves are excited by one actuator and received by several sensors, which are made up of independent piezoelectric elements. Experimental results show that the mehod is promising for damage identification in practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Guided wave (GW) has been used for many years in non-destructive testing (NDT). There are various ways to generate the guided wave, including impact or impulse either manually or using devices. Although the method of impact or impulse is considered to be simple and practical in guided wave generation, it produces waves with broadband frequencies, which often make analysis much more difficult. The frequency bandwidth produced by manual impacts is usually at the low end, and is therefore justified when dealing with one dimensional wave propagation assumption in low strain integrity testing of cylindrical structures. Under such assumption if the velocity is known accurately, NDTs can produce reasonably good results for the condition assessment of the structure. However, for guided wave propagation in timber pole-like structures, it is rather complicated as timber is an orthotropic material and wave propagation in an orthotropic medium exhibits different characteristics from that in isotropic medium. It is possible to obtain solutions for guided wave propagation in orthotropic media for cylindrical structures, even though the orthotropic material greatly complicates GW propagation. In this paper, timber has been considered as a transversely isotropic (i.e. simplified orthotropic) material and a comparative study of GW propagation in a timber pole is conducted considering isotropic and transversely isotropic modelling. Phase velocity, group velocity and attenuation are the main parameters for this comparative study. Moreover, tractionfree situation and embedded geotechnical condition are also taken into consideration to evaluate the effect of boundary. Displacement profile, wave propagation pattern and power flow at particular frequency are utilized to determine different displacement components of longitudinal and flexural waves along and across the timber pole. Effect of temperature and moisture content (in terms of modulus of elasticity) in timber pole is also compared to show the variation in phase velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timber is one of the most widely used structural material all over the world. Round timbers can be seen as a structural component in historical buildings, jetties, short span bridges and also as piles for foundation and poles for electrical and power distribution. To evaluate the current condition of these cylindrical type timber structures, guided wave has a great potential. However, the difficulties associated with the guided wave propagation in timber materials includes orthotropic behaviour of wood, moisture contents, temperature, grain direction, etc. In addition, the effect of fully or partially filled surrounding media, such as soil, water, etc. causes attenuation on the generated stress wave. In order to investigate the effects of these parameters on guided wave propagation, extensive numerical simulation is required to conduct parametric studies. Moreover, due to the presence of multi modes in guided wave propagation, dispersion curves are of great importance. Even though conventional finite element method (FEM) can determine dispersion curves along with wave propagation in time domain, it is highly computationally expensive. Furthermore, incorporating orthotropic behaviour and surrounding media to model a thick cylindrical wave (large diameter cylindrical structures) make conventional FEM inefficient for this purpose. In contrast, spectral finite element method (SFEM) is a semi analytical method to model the guided wave propagation which does not need fine meshes compared to the other methods, such as FEM or finite difference method (FDM). Also, even distribution of mass and stiffness of structures can be obtained with very few elements using SFEM. In this paper, the suitability of SFEM is investigated to model guided wave propagation through an orthotropic cylindrical waveguide with the presence of surrounding soil. Both the frequency domain analysis (dispersion curves) and time domain reconstruction for a multi-mode generated input signal are presented under different loading location. The dispersion curves obtained from SFEM are compared against analytical solution to verify its accuracy. Lastly, different numerical issues to solve for the dispersion curves and time domain results using SFEM are also discussed.