2 resultados para shell quality

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Storage of adzuki beans and other pulse grains causes biochemical and physical changes that affect the hydration properties of the beans. This affects the quality of products made from the beans such as the Japanese bean paste “ann.” Storage, particularly under unfavourable conditions, leads to the “hard shell” phenomenon, where beans fail to imbibe water when soaked and remain hard, and the “hard-to-cook” phenomenon where the seeds hydrate normally, but the cotyledon fails to hydrate and soften during cooking. The hard shell phenomenon is attributable to impermeability of the seed coat to water, which is due to biochemical changes in the seed coat, such as the formation of protein-tannin complexes, and biophysical changes such as reduction in size or closure of the straphiole aperture in the hilum area—the main area for water entry into the adzuki bean. The hard-to-cook phenomenon is due to changes in the cotyledon tissue, which include formation of insoluble pectinates, lignification of the cell wall and middle lamella, interaction of condensed tannins with proteins and starch, and changes to the structure and functionality of the cellular proteins and starch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tool deflection during milling operation leads to dimensional error, decreasing surface quality and increasing rejection rate. In this study, tool deflection during the milling of the inner surfaces of Ti–6Al–4V prosthetic acetabular shell produced by selective laser melting (SLM) was modelled. The first purpose of this research is to provide a general static cutting tool deflection model for ball nose cutters where deviation of machine components and tool holder are so small as to be considered negligible. This is because the values of machine component and tool holder deflection were lower than standard tolerances (10 μm) and found to be lower than 1/15 of tool deflection. The second and third objectives of this work involve calculating contact surfaces by determining workpiece and tool geometry and choosing second moment of inertia using a novel cross section method (CSM). Static models for three quasi-analytical methods (QAM) that are simple cantilever beam model (SCBM), two-section model (TWSM) and our three section model (THSM) are presented. THSM showed high accuracy which was validated by 3D finite element method (FEM3D) and experimental measurements. The accuracy of tool deflection calculation using THSM by computing, shank, flute and ball head deflection and also utilizing CSM to determine second moment of inertia showed notable improvements.