2 resultados para sensor uncertainty

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are used in health monitoring, tracking and security applications. Such networks transfer data from specific areas to a nominated destination. In the network, each sensor node acts as a routing element for other sensor nodes during the transmission of data. This can increase energy consumption of the sensor node. In this paper, we propose a routing protocol for improving network lifetime and performance. The proposed protocol uses type-2 fuzzy logic to minimize the effects of uncertainty produced by the environmental noise. Simulation results show that the proposed protocol performs better than a recently developed routing protocol in terms of extending network lifetime and saving energy and also reducing data packet lost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous sensor stream data are often recorded as a series of discrete points in a database from which knowledge can be retrieved through queries. Two classes of uncertainties inevitably happen in sensor streams that we present as follows. The first is Uncertainty due to Discrete Sampling (DS Uncertainty); even if every discrete point is correct, the discrete sensor stream is uncertain – that is, it is not exactly like the continuous stream – since some critical points are missing due to the limited capabilities of the sensing equipment and the database server. The second is Uncertainty due to Sampling Error (SE Uncertainty); sensor readings for the same situation cannot be repeated exactly when we record them at different times or use different sensors since different sampling errors exist. These two uncertainties reduce the efficiency and accuracy of querying common patterns. However, already known algorithms generally only resolve SE Uncertainty. In this paper, we propose a novel method of Correcting Imprecise Readings and Compressing Excrescent (CIRCE) points. Particularly, to resolve DS Uncertainty, a novel CIRCE core algorithm is developed in the CIRCE method to correct the missing critical points while compressing the original sensor streams. The experimental study based on various sizes of sensor stream datasets validates that the CIRCE core algorithm is more efficient and more accurate than a counterpart algorithm to compress sensor streams. We also resolve the SE Uncertainty problem in the CIRCE method. The application for querying longest common route patterns validates the effectiveness of our CIRCE method.